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Abstract: Calibration of pesticide leaching models may be undertaken to evaluate the ability of models
to simulate experimental data, to assist in their parameterisation where values for input parameters
are difficult to determine experimentally, to determine values for specific model inputs (eg sorption
and degradation parameters) and to allow extrapolations to be carried out. Although calibration of
leaching models is a critical phase in the assessment of pesticide exposure, lack of guidance means that
calibration procedures default to the modeller. This may result in different calibration and extra-
polation results for different individuals depending on the procedures used, and thus may influence
decisions regarding the placement of crop-protection products on the market. A number of issues are
discussed in this paper including data requirements and assessment of data quality, the selection of a
model and parameters for performing calibration, the use of automated calibration techniques as
opposed to more traditional trial-and-error approaches, difficulties in the comparison of simulated
and measured data, differences in calibration procedures, and the assessment of parameter values
derived by calibration. Guidelines for the reporting of calibration activities within the scope of pesti-

cide registration are proposed.
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1 INTRODUCTION
Environmental exposure to crop protection products is
traditionally assessed using a range of tools, including
laboratory, lysimeter and field experiments, and the
use of computer simulation models. Although the use
of computer models in pesticide registration is an
attractive option in terms of temporal, financial and
manpower resources when compared with experimen-
tation,’ modelling is not sustainable on its own and
experimental work is necessary. There is an intimate,
although complex, relationship between models and
experimental data. Extrapolation using predictive
models may act as a substitute for field studies, since
experimental investigation of the fate of crop-protec-
tion products for multiple locations and climatic
conditions is impractical. However, experimental data
are essential for model development, for evaluating the
accuracy of models in the description of field
behaviour, and thus for assessing the confidence that
should be placed in model predictions. Calibration of
fate models against experimental data is hence often at
the heart of exposure assessment for crop protection
products, especially at higher tiers.

Despite the complexity of pesticide leaching models
in use and the large number of model input parameters

that could be varied, the required activities for calibra-
tion are often given little consideration.’ The cali-
bration process is left to the discretion of the modeller
and thus an ad hoc approach is adopted. There have
been numerous calls for the development of guidelines
in relation to modelling'>>** to decrease the uncertainty
and the large user-subjectivity associated with the use
of pesticide leaching models.*> Codes of ‘Good
Modelling Practice’ have been proposed by Gorlitz®
and by Estes and Coody.” Good Modelling Practices
were defined as ‘the development, maintenance, distri-
bution and use of computer simulation models where-
by the integrity of the model, its various improvements
and utilisation is assured’.” These documents provide
a general framework for ensuring the quality, consis-
tency and integrity of the models,? but do not provide
guidelines on either the model parameterisation per se
or on calibration.

The development of detailed modelling guidelines
that are broadly applicable is a difficult task given the
heterogeneity of modelling situations. Resseler ez al®
have issued recommendations for performing model-
ling studies for registration purposes, but these are
mainly relevant to the German registration context.
CAMASE, an EU-funded workgroup, has issued
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general guidelines for modelling which cover the
evaluation of models, sensitivity and uncertainty
analyses and calibration.’ The guidance for calibration
was intended to be applicable to a large range of
environmental models and this resulted in the deriva-
tion of general concepts rather than specific guidelines.
More recently, the FIFRA Environmental Model
Validation Task Force has issued a report containing
guidance information for calibrating leaching and run-
off models.'® The report proposes some basic princi-
ples for calibration and identifies those parameters to
be varied within the validation work undertaken by the
Task Force. Although these two guidance documents
for calibrating pesticide leaching models emphasise
the need for a high quality report of calibration activi-
ties for improved transparency and reproducibility,
detailed information that should be made available in
calibration reports is not listed. Given the importance
of written communication in the pesticide review
process, the development of guidelines for reporting
calibration activities appears desirable. The develop-
ment of guidance for reporting is also expected to be
useful in that indirect guidance for the performance of
calibration can be suggested.

The present paper presents a critical review of the
use of calibration and calibration procedures in
pesticide fate modelling, and proposes guidelines for
reporting calibration activities within the context of
pesticide registration.

2 THE USE OF CALIBRATION IN MODELLING THE
ENVIRONMENTAL FATE OF PESTICIDES
Calibration of pesticide leaching models may be
undertaken for a range of purposes which broadly fall
under four categories: (1) model parameterisation, (2)
‘validation’ of models or of the use of models, (3)
extrapolation and (4) targeted parameter estimation.

2.1 Model parameterisation

Most pesticide leaching models were initially devel-
oped as research tools to describe the fate of com-
pounds in heavily instrumented field or laboratory
experiments. For this reason, there has been little
emphasis on the use of parameters which can readily
be derived from easily measured data or on the devel-
opment of procedures to support the parameterisation
of a model for cases where few data are available. This
has restricted the extensive use of detailed mechanistic
models.!! In some instances, the derivation of ade-
quate values for input parameters relies on the fitting
of a relationship to experimental data. Examples
include the derivation of DTy, values from laboratory
degradation data or the derivation of parameters of the
van Genuchten or Brooks and Corey equations from
water-release data. Where such an independent assess-
ment is not possible, parameter values may be attri-
buted by calibration of the whole model (‘indirect
fitting’)'? or by ‘expert judgement’ where the experi-
ence and knowledge of the modeller prevail. Deter-
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ministic pesticide leaching models require a detailed
set of theoretical parameters, due to the highly
complex and variable character of the natural soil-
plant-atmosphere conditions which are simulated.'?
Processes affecting the fate of pesticides in soil and
water are numerous and difficult to characterise in
terms of effective parameters. Some of the parameters
integrated into the models cannot easily be measured
or determined. Some authors have thus questioned the
ability of pesticide leaching models to predict the fate
of organic chemicals in the environment with accep-
table accuracy, and argue that a calibration against
measured data is always necessary to simulate the
leaching of solutes.'? The requirement for calibration
appears particularly important for preferential flow
models. !>

2.2 Model testing or model ‘validation’

The testing of a model against experimental data is an
essential activity that contributes to estimating the
confidence that should be assigned to the predictions
of the model. Such evaluations have been carried out
for pesticide leaching models used for pesticide
registration in Europe and the USA.*!%1618 The
testing of the capacity of a model to describe or predict
reality has often been referred to as ‘model validation’
or ‘model verification’*®! even though it is demon-
strated that complex environmental models cannot be
proven or validated, but only tested and invali-
dated.?*?* The terminology used is misleading with
regard to the confidence that should be assigned to the
models, and wording such as ‘model testing’ or ‘model
evaluation’ is more appropriate.’> Procedures for
evaluating models have ranged from blind simulations
where no calibration is carried out®* to approaches
where calibration is at the heart of the testing exercise.?
Although some authors evaluated a number of
pesticide leaching models using predictive simulations
only,>!” the combination of blind and calibrated
simulations in model evaluation has been the most
common approach in recent years.>'*?> Testing
based on blind simulations will assess the accuracy of
models where a potential use without calibration is
expected. Blind simulations will provide an assessment
of the model as well as the associated parameteri-
sation, whereas controlled calibrated simulation can
be considered a truer test of the inherent capability of
the model to represent field data. Loague®® suggested
an evaluation approach in which a solute transport
model is first calibrated against field data from a
specific period by adjusting input parameters until an
acceptable fit is achieved and then run for a different
time using the calibrated parameter set. The model is
deemed wvalidated if an ‘acceptable’ fit is found
between the model predictions and the experimental
data for the second period.?” However, a successful
calibration of a model against experimental data could
imply either that the model structure and the par-
ameter values are both realistic, or that they are both
unrealistic but compensate for one another.”® Some
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authors consider that the only appropriate way of
evaluating the accuracy and performance of a model is
to attempt to predict the measured data with values for
all parameters obtained independently (blind simula-
tion).?® However, the parameterisation of complex
pesticide leaching models often requires the use of
expert opinion or pedotransfer functions to select
values for some of the numerous input parameters
required.?® A blind simulation will therefore not only
test the model, but other aspects of the parameteri-
sation as well, such as the data that were used to derive
input values, the expert judgement of the modeller or
the quality of the pedotransfer functions.>":*?

2.3 Extrapolation

Field and lysimeter experiments represent a major
financial commitment for agrochemical companies
wishing to register a new compound, and modelling is
commonly used to maximise the return on these
studies. A possible approach is the use of experimental
data to calibrate a leaching model and then use of the
calibrated set of input parameters to make predictions
for different environmental conditions (extrapolation).
Extrapolations to radically different scenarios (eg
between contrasting soil types or different climatic
regions) are questionable given the uncertainty in the
modelling, and extrapolations are thus most often
limited to small deviations from the calibrated set. A
common form of extrapolation is the calibration of a
model against field data for a number of years and then
the running of the model for longer time series for the
same site.”>> The approach is considered of most
interest when unusual weather conditions have been
experienced during a field study.>* However, it has
been demonstrated that the use of a single set of input
parameters for different agricultural seasons might not
lead to a good description of results over the entire
experimental period,'”?%?>® especially under cir-
cumstances where droughts are experienced.'? Other
examples of limited extrapolation are the use of an
application rate different from that used in the
calibration'"> and the simulation of leaching deeper
than the profile depth used during calibration.>’

Two opposite views coexist with regard to the
extrapolation of results from a calibrated set to
different conditions. For some, successfully calibrating
a model demonstrates its ability to simulate a specific
set of conditions and allows one to extrapolate to other
points in space and time.?® For others, the calibration
of complex deterministic models tends to be specific to
the conditions at the site for which experimental data
were collected and no extrapolation should be carried
out. Russell ez al®® considered that no extrapolation
should be carried out without prior calibration, while
Vanclooster et al* judged that calibration should be
avoided wherever possible.

2.4 Targeted parameter estimation
Degradation and sorption parameters are environ-

mental fate variables of particular importance in the
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registration of pesticides. Half-lives and sorption
distribution coefficients are typically derived from
controlled experiments in the laboratory, but there is
continuing debate as to whether these are suitable for
describing the field behaviour of compounds.*’ A
possible supplement to laboratory determinations is to
use data measured in field or lysimeter experiments to
estimate sorption and degradation parameters through
calibration of a pesticide leaching model.*’™* The
approach consists in calibrating a pesticide leaching
model against field data such as pesticide residue
profiles in soil, concentrations in drainflow or concen-
trations in lysimeter leachate, thereby back-estimating
sorption and degradation parameters. Although the
calibration could be carried out using a traditional
trial-and-error approach, it is often performed auto-
matically using parameter estimation packages such as
PEST,** UCODE?’ or SUFI.*® The general approach
of estimating values for input parameters through
model calibration is commonly referred to as ‘inverse

modelling’.*’

3 ISSUES ASSOCIATED WITH THE CALIBRATION
OF PESTICIDE LEACHING MODELS

3.1 Data requirements

Most of the data used for calibration in registration
modelling are collected in field and lysimeter experi-
ments. The amount of information collected in the
field depends on the purpose of the study and differs
significantly between field experiments carried out for
research and those performed for regulatory purposes.
Information should not be collected in the field only
because it has been collected in the past*® and
Diekkriiger er al*® suggested that more effort is put
into the improvement of field measurement tech-
niques rather than into the development of new
models. Data which are useful for a modeller when
simulating the results of a field study are site-specific
meteorological data (including those necessary to
calculate potential evapotranspiration using the
Penman—Monteith equation: air temperatures, wind
speed, humidity, sunshine hours or solar radiation); a
detailed soil profile description, including soil struc-
ture; basic soil properties (such as organic carbon
content, particle-size distribution, soil pH where the
fate of ionisable compounds is simulated, bulk
density); water retention properties of the soil; an
assessment of soil variability at the field scale; the
actual application rate of the compound and the
proportion reaching the soil; an estimation of crop
development; sorption and degradation parameters
specific to the experimental soil (ideally at different
depths); complete mass balances of water and solutes,
including a non-reactive tracer (where possible);
residue profiles; measurements of fluxes. Although
these determinations represent additional costs, their
absence would contribute to uncertainty in the
modelling. Bromide is often used in field experiments
carried out for research purposes as an inert (ie non-
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degraded, non-sorbed) tracer and may provide in-
formation on soil hydrology and the extent of solute
dispersion.10 However, concerns about the suitability
of bromide profiles to assess the transport components
in models have recently been reiterated.>?

Water and solute fluxes may be highly dynamic and
change rapidly with time. Flux measurements (eg
concentrations in drainflow or percolation) should
thus be made at an adequate temporal resolution. A
fine resolution is particularly required when prefer-
ential flow processes are an important pathway of
transport or when volatilisation is to be estimated from
the measurement of pesticide concentrations close to
the surface in the hours and days following applica-
tion.>°

The nature, quantity and quality of data have a
particular importance in calibration®? as this will partly
determine whether the calibration problem is cill-
posed’ or ‘well-posed’.’® Inverse modelling has been
widely used in soil water physics to estimate soil
hydraulic properties, such as the parameters of the van
Genuchten—Mualem model,>**? from transient out-
flow experiments. If water outflow data are used on
their own, the calibration problem is ill-posed and
non-uniqueness issues are encountered. The inclusion
of additional data such as water content or water
tension will stabilise the inverse problem and allow a
robust estimation of hydraulic parameters, provided
the data are of quality.”> The identification of the data
requirements for an effective and robust calibration of
pesticide leaching models (a ‘well-posed’ inverse
problem) should be considered a research priority.
Aspects of data quality are further discussed below.

3.2 Selection of a model for performing the
calibration

The selection of a leaching model which is potentially
capable of simulating the experimental data is essential
if a calibration is to be carried out.”’* Although detailed
information on individual models is usually widely
available, little guidance is available to support model
selection on the basis of objective criteria. Guidance

such as that generated by Pennel et al'® would be
useful. These authors provided guidelines on the
selection of a specific leaching model (CMLS, PRZM,
LEACHP, MOUSE or GLEAMS) on the basis of the
simulation of an experimental dataset using these five
models. Del Re and Trevisan’° identified a number of
criteria for selecting models, but these were generic
and cannot be used to select a specific model. The lack
of guidance on model selection means that the choice
of a model for parameterisation and calibration usually
falls to the modeller undertaking the work. Differences
between models used for pesticide registration in
Europe have lessened in the last few years,’® but they
still present their own specificities and it is expected
that this will lead to differences in predictions. The
use of an inappropriate model will lead to a poor
simulation of the data®”>>® and to the derivation of
unrealistic values for input parameters where a
calibration is carried out.?® The role of model accuracy
in limiting the end use of calibrated parameters should
not be overlooked.

The choice of a model may be based on a number of
decision criteria, including the objectives of the
modelling and the availability of the data necessary
to parameterise the model. For purposes of screening
or general management guidance, the use of simpler
models which are less data-intensive is justified.’® For
calibration purposes within the EU registration pro-
cess, it is proposed that the main criterion for the
choice of a specific model is the knowledge of the main
processes affecting the fate of pesticides in the field
context. A set of decision rules to choose one model
from the four which are mainly used for pesticide
registration in Europe is proposed in Table 1. A
detailed description of the capabilities of the different
models can be found elsewhere.®®© The decision
criteria presented in Table 1 may not lead to the
selection of a single model, and, in these instances, a
decision should be made as to the most significant
processes affecting the fate of crop-protection pro-
ducts. Preferential flow and pesticide volatilisation are
both processes likely to dominate model selection

Table 1. Set of decision criteria to assist in the selection of a specific model for describing field data and performing calibrations. Only those leaching models
selected by the FOCUS groundwater scenarios working group are considered. Brackets indicate that the use of the model is possible although the parameteri-

sation is not straightforward

Decision criteria Model(s) suggested
Accounting for pesticide losses by volatilisation PEARL, PELMO, PRZM
Evidence or strong suspicion of a significant influence of preferential flow on water MACRO

hydrology or pesticide loss
Simulation of complex degradation schemes
Simulation of the fate of compounds susceptible to ionisation

Simulation of the interaction between the unsaturated zone and the upper groundwater

Need for an accurate description of soil hydrology
Simulation of lysimeter experiments
Increase in sorption with time

PELMO, PEARL

PEARL, PELMO, (PRZM), (MACRO)
PEARL

MACRO, PEARL

PEARL, MACRO, PELMO?, PRZM?
PEARL, PRZM, PELMO, (MACRO)

@ PELMO does not integrate a bottom boundary condition specific to the simulation of lysimeter flow, but the model has been considered capable of describing
lysimeter datasets for coarse-textured soils.'” Given the similarities between PELMO and PRZM, it is anticipated that this conclusion can be extended to PRZM.
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where they have a significant impact on pesticide fate.
A model which accounts for all processes affecting the
fate of pesticides in the field is currently not available.
The modeller therefore has to make concessions and
select the least imperfect of those available. The
rationale supporting the choice of a particular model
should be carefully documented.

3.3 Critical assessment of the experimental data
A primary requirement for a successful calibration is
that the experimental data which are used to calibrate
against are of good quality. If this is not the case, then
calibration should not be considered in the first place.
The adequacy of the experimental data to be used for
calibration should not be taken for granted, since
sources of error and uncertainties in experiments
investigating the fate of pesticides are potentially
numerous.®’ Typical sources of uncertainty may
include: the intrinsic variability in the field, the
performance and adequacy of the sampling and
measuring equipment, and the uncertainty associated
with analytical determinations (limits of detection,
definitive identification of analytes). Hence, although
experimental data are traditionally considered to be
certain, they can be largely uncertain and variable in
reality,”” and should be considered as such in the
calibration.'®?° Although critical assessments of the
experimental data have only rarely been reported in
the literature, such an assessment should be con-
sidered as a prerequisite to calibration and adequately
reported. Particular attention should be paid to
aspects of uncertainty, the quality of replication
(where appropriate) and the presence of outliers in
the dataset. Attempts to understand the reasons for
large variability in replicated data should be made, and
measures taken to address the variability in the data
should be reported. Pennell ez al'® observed that the
variability in replicated bromide and pesticide con-
centrations was large, and subsequently used the least
variable depth to solute centre of mass to undertake
model calibration. Within the scope of model evalua-
tion, calibration carried out with a poor-quality
experimental dataset could lead to the rejection of a
good model or to the acceptance of a poor one.'? In a
context of parameter estimation and extrapolation,
this could result in the derivation of parameter values
with limited physical meaning and specific to the
situation considered.

3.4 Choice of input parameters to be varied during
the calibration
The rationale behind the selection of specific model
input parameters to be varied during a calibration is
rarely reported in the literature. Input parameters that
need to be varied in the calibration are those that are
both uncertain and have a strong influence on model
output. The selection of parameters should therefore
be based upon a combination of information on model
sensitivity and parameter uncertainty.

The degree of influence of input parameters on
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model predictions can be assessed through a sensitivity
analysis. Sensitivity analyses vary in complexity and
include one-at-a-time sensitivity analyses, analyses
based on random sampling, response surface method-
ology and Fourier amplitude sensitivity tests.®* In the
simplest and most common of these methods (one-at-
a-time approach), each selected input parameter is
varied and the impact of this variation on model
output is scrutinised. Recently, sensitivity analyses
have been carried out for the four leaching models
used for pesticide registration in Europe, using four
different scenarios and one-at-a-time and Monte
Carlo approaches.®®°* Information on the sensitivity
of these leaching models has also been reported by
Fontaine et al,®® Jarvis,66 Smith ez al,®” Boesten,®® and
Boesten and van der Linden.®® Results of sensitivity
analyses tend to depend on the initial scenario
considered’® and the sensitivity of the model also
varies with the output considered (eg pesticide losses
by leaching, drainflow or run-off). Consequently,
although these studies give a general idea about the
most influential parameters for a particular model and
for particular scenarios, it is recommended that a
limited sensitivity analysis be carried out if environ-
mental conditions or pesticide properties in the
modelling differ from those for which sensitivity
information is available.

Some modellers consider that calibration should be
restricted to those parameters which are non-measur-
able and those parameters for which site-specific
measurements are not available.!! It is the opinion of
the authors that parameters for which site-specific
estimations are available should nevertheless be
allowed to vary in the calibration, albeit to a limited
extent because their values are still uncertain (due to
spatial variability and uncertainty arising from the
laboratory and analytical procedures) and because
they may not be representative of field behaviour.*® An
example of such procedure was presented by Klein ez
al. ™! Although field capacity was measured indepen-
dently, it was allowed to vary in their calibration on the
basis that field capacity had only operational signifi-
cance. Parameter values determined from empirical
relationships such as pedotransfer functions (eg for the
determination of the water retention curve or the
hydraulic conductivity at saturation) should be con-
sidered uncertain and may need to be included in the
calibration if it is found that they have a significant
influence on model predictions. Potential evapotran-
spiration (PET) data can be determined using a variety
of equations which will lead to different estimates and
should therefore be considered to be uncertain. PET
data are expected to have a major impact on calculated
water balances.®*

There is general consensus on the need to use
sensitivity and uncertainty information for selecting
those parameters to be included in a calibration, but
further research is required to identify the optimum
number of parameters to be varied to allow a robust
calibration of pesticide leaching models.
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3.5 Trial-and-error versus automated calibration
Calibration of pesticide leaching models is tradition-
ally performed in a non-automated way (‘manual’ or
‘trial-and-error’ calibration). This consists in manually
modifying values for a small number of input par-
ameters selected by the model user, running the model
and examining the output files to see whether the
modification led to a better description of the experi-
mental data. This iterative procedure is repeated until
the modeller is satisfied with the improvement in the fit
between model predictions and experimental data.
Manual calibration offers advantages where data are
sparse and of poor quality, and where expert judge-
ment is required to assess the reasonableness of
parameter estimates. However, manual calibration
also suffers from a number of shortcomings, including
the subjectivity in a visual assessment of the fit between
measured and predicted data,’® the subjectivity in
making the decision to end the calibration,** the
difficulty in dealing with the calibration of more than
two parameters at a time,” the lack of statistical
information on the calibrated parameters,*’ the lack of
explicit assessment of the confidence that should be
assigned to the calibration,’” and the tedious and time-
consuming aspects of this process.’*”®> Furthermore,
when a mismatch between data and model is obtained,
it is difficult to know if this originates from model
deficiencies or from an incomplete adjustment of the
parameters.>

Software packages enabling the automation of the
calibration process for complex models were devel-
oped in the early 1990s and are now widely used,
especially in the fields of groundwater flow model-
ling*” and soil water physics.”> The principle consists
in the minimisation of an objective function (usually
the weighted sum of squared residuals between
measured data and model predictions) through the
modification of selected input parameters in an
iterative process. Modification of the model input is
based on a variety of non-linear estimation algorithms,
such as the steepest descent, Gauss—Newton, Gauss—
Marquardt—Levenberg and simplex procedures, which
aim at keeping the number of iterations to a
minimum. Prior information on the parameters,
including limits to their variation can be integrated
into the calibration. Stand-alone packages such as
PEST** or UCODE® can be linked to virtually any
DOS model (including the leaching models used for
pesticide registration in Europe) without the need for
modification of the model code. The packages will
take control of the entire calibration process by
running the model, examining the discrepancy be-
tween model output and experimental data, and
adjusting selected input parameters. These steps are
repeated until an optimised fit between model
predictions and experimental data is achieved and
statistical information on the quality of the calibration
is generated. Examples of the application of auto-
mated calibration procedures to pesticide leaching
models have been reported.*’™*® Guidelines for

750

calibrating models using automated techniques have
been provided by Hill.”®

The choice of a particular mode of calibration
(manual wersus automatic) should be left to the
modeller, but it should be thoroughly justified. It is
the opinion of the authors that pesticide fate modellers
should be encouraged to use automatic techniques for
calibration, as this can help to establish the confidence
to be assigned to calibrated values. It is essential,
however, that the modeller remains active in the cali-
bration through critical evaluation of all stages of the
process.

3.6 Difficulties in the comparison of model output
and experimental data

Investigations of the fate of a crop protection product
in the field can involve a wide range of measurements.
Data which are traditionally used in model calibration
within regulatory modelling are (1) pesticide residues
in soil for different times and depths (field leaching
and dissipation studies), (2) concentration of pesti-
cides at a given depth in water extracted by suction
samplers (field leaching study), (3) drainflow and
concentration of pesticides in drainflow (field drain-
flow study) and (4) water flow at the bottom of
lysimeters, concentrations of pesticides in the leachate,
total loss by leaching and final soil residue profile
(lysimeter study). Additional data may comprise the
distribution of soil moisture within the profile,
measurements of water tension and height of any
water table. Ideally, the observations should comprise
fluxes (ie water flows and pesticide concentrations) as
well as mass balances for water and solutes. Flux
measurements enable the identification of preferential
flow phenomena and the comparison of model output
to patterns, peak magnitude, values at each individual
sampling point or values integrated over a time period.
Flux measurements for water permit an independent
assessment of the hydrological component of a
model.””

A direct comparison between the measured data and
outputs from leaching models is rarely possible and, in
most instances, model predictions will need post-
processing before the model can be calibrated. A
number of solutions to the difficulties encountered
when comparing model output and pesticide residues,
suction sampler, lysimeter or drainflow data are
proposed below.

3.6.1 Pesticide residues in the soil profile

Pesticide residue data consist of the amount of the
compound at different depths in the profile. The
parameterisation of the profile in a modelling exercise
requires the definition of layers, but those may differ
from the layers used in the field sampling (pesticide
residues are typically sampled in 5- to 10-cm incre-
ments in the topsoil). Where a match between
modelling and sampling depth cannot be obtained,
weighted averages of model outputs for each model-
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ling layer will be required to enable a comparison
between model predictions and experimental values.

3.6.2  Suction samplers

Although suction samplers are widely used to assess
the leaching potential of pesticides in the field, they
provide a challenge to the modeller who wishes to
simulate the field data collected. Suction samplers
extract water from a soil volume which is related to the
suction applied and the characteristics of the soil.”® In
contrast, pesticide leaching models produce an output
value for a layer comprised between two different
depths (the value reported is usually the average for the
layer) and a direct comparison between suction
sampler data and model output is thus not valid.
Spatial averaging of the model output across different
layers is necessary, but there is a difficulty related to its
extent since the radius of the soil volume of extraction
may lie between 0.1 and 0.5m.”°

3.6.3 Lysimeters

Lysimeters are hydrologically isolated soil cores
instrumented to allow the collection of the water
flowing at their base. Samples of leachate are collected
on discrete dates, often with irregular time intervals
between sampling points. Any pesticide concentra-
tions measured are integrations over time, with the
integration time varying from one sample to the next.
Most pesticide leaching models produce output on a
regular time-step (hour, day, month or year) and are
not designed to output integrated concentrations over
time. A direct comparison between concentrations
measured in lysimeter leachate and the model output
for the sampling date is thus an inadequate procedure.
Model outputs for flow and pesticide leaching must be
integrated over time between the last and the actual
sampling date by accumulation and calculation of a
flow-weighted average pesticide concentration, re-
spectively.®°

3.6.4 Field drainflow studies

Field drainflow studies monitor the flow of water and
concentrations of pesticides at the outlet of a field
drainage system. Water flow is usually monitored
continuously using an automatic flow meter, whereas
water samples are generally collected at irregular
intervals for pesticide determination and quantifica-
tion. Since a pesticide leaching model produces output
with a regular time-step, the comparison with total
loadings estimated in the drainflow study is difficult.
The modeller needs to make assumptions on the
pattern of pesticide concentrations between sampling
occasions. The modeller may assume stable concen-
trations between the two sampling times (at the con-
centration for the first sample) or a linear interpolation
of concentrations between successive samples.>”

3.7 Visual versus numerical assessment of fit
The calibration of models against experimental data is

based on an iterative procedure where input par-
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ameters are varied at each iteration. Reasons for
stopping the calibration may include the achievement
of a fit between measured and simulated data which is
considered ‘acceptable’, or inability to improve the fit
any further. The goodness-of-fit (or lack-of-fit) of the
model predictions to the measured data may be
assessed graphically or by using a range of indices.
Graphical displays are typically used when a trial-and-
error calibration is carried out. These most often plot
(1) changes in a variable as a function of time or depth
and (2) the measured data against the simulated data.
Although they are useful for showing trends, types of
error and distribution patterns,’? the level of adequacy
between simulated and measured data to be con-
sidered ‘acceptable’ is user-dependent, and this limits
the use of such displays. Also, graphical displays may
not be adequate for examining the discrepancy
between model and simulated data or for revealing
problems with models as demonstrated by Kirchner ez
al?® using two simple linear models.

A number of numerical indices have been used to try
to reduce the subjectivity introduced by the modeller
into the evaluation of model performance. These
include the total error (TE), the maximum error
(ME), the root mean square error (RMSE), the scaled
root mean square error (SRMSE), the coefficient of
determination (CD), the model efficiency (ME or
EF), the Nash—Sutcliffe coefficient (CNS), the average
difference (AVDIF), the coefficient of shape (CS), the
cumulative value test (CVT), the coefficient of resi-
dual mass (CRM), linear regressions and the ~ and
F-tests. The reader is referred to Loague and Green’?
and to Janssen and Heuberger” for detailed mathema-
tical expressions of these indices. The automatic
calibration of models using dedicated packages usually
relies on the minimisation of an objective function
defined as the weighted sum of squared residuals
between observed and measured data. Although
statistical indices have been increasingly used in the
comparison between measured and simulated data,
standards and even the usefulness of these goodness-
of-fit indices have not yet been established for the
various applications in which they might be used.?°
Several of these statistics are sensitive to a few large
errors, especially in small datasets.”? Also, goodness-
of-fit statistics do not take into account temporal
offsets of the model predictions against experimental
data. A timing difference in the prediction of onset of
drainflow of a few hours over a period such as a whole
winter is of little consequence for the interpretation of
results, but may have a major effect on goodness-of-fit
statistics.?° Furthermore, the choice of levels of fit
deemed acceptable defaults to the modeller and the
goodness-of-fit is therefore subjective. Typical tests
are probably not sufficiently strict to convince model
sceptics about the accuracy and usefulness of models,
and there would be a need for the establishment of
agreed performance criteria®® that invalid models are
unlikely to pass.”® Both graphical and numerical
methods have limitations when considered individu-
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ally’? and the combination of the two sets of tech-
niques should be preferred.®'-%2

3.8 Sequential procedures in calibration

The general consensus is that the most appropriate
procedure for calibrating models is first to calibrate the
hydrology of the model to provide a reasonable
representation of water movement at the experimental
site, and then to calibrate the solute transport com-
ponent of the model.'®?%?® It is generally considered
that parameters calibrated against soil hydrology
should be left unchanged during the calibration
against pesticide data.®! Although these general pro-
cedures are desirable, it may not always be possible to
get a good fit to the hydrology or to derive a unique set
of calibrated values. Whilst some authors claim that
having a good simulation of water fluxes is necessary to
predict both pesticide fluxes and concentrations
accurately, simulating a good fit to the pesticide data
with an inadequate description of the hydrology is
possible.®> Data for a non-interactive tracer such as
bromide are frequently used as an intermediate step
between calibration of hydraulic and pesticide rou-
tines. However, in a number of evaluation exercises
where bromide was used, a simultaneous good model
fit to the water, bromide and pesticide data was not
possible.?>®** Given these limitations and the uncer-
tainty associated with both the model input par-
ameters and the hydrological data, the modification of
parameter values which were calibrated against the
hydrology during a calibration of the pesticide section
of the model can be justified provided that the
hydrology-calibrated parameters are only varied within
the bounds of their uncertainty and that the fit to the
hydrology still meets the acceptability criteria of the
modeller. Such conditional calibrations can be auto-
mated using packages such as PEST when used in its
regularisation mode.** In specific instances (eg par-
ameter estimation), a simultaneous calibration of the
water and pesticide components of leaching models
may be more appropriate, as a sequential calibration
might lead to the derivation of lumped parameters.
Parameter lumping is treated in more detail in the next
section.

3.9 Potential pitfalls in the calibration of pesticide
leaching models

Pesticide leaching models are large, non-linear, com-
plex simulation systems and may hence suffer from
non-uniqueness with regard to the set of calibrated
parameters.®> Non-uniqueness occurs when different
combinations of parameters or parameter values
provide an equally good fit to the data, and commonly
results from large correlation between input par-
ameters in the model and/or when the data are
insufficient in terms of quantity and quality with
respect to the number of parameters to be identified
through model calibration. Pesticide fate models are
likely to be subject to non-uniqueness issues because
of their non-linear character and the inherent com-
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pensation of a number parameters with regard to the
prediction of pesticide loss (eg sorption and degrada-
tion parameters with respect to total leaching). Non-
uniqueness issues in the calibration of pesticide
leaching models remain largely unnoticed when a
manual calibration is carried out and are best revealed
using automated calibration techniques.*’ Calibration
uniqueness when deriving sorption and degradation
parameters may be assessed by using different sets of
starting values’>®® or response surface analysis.?”®®
Additional research should be carried out to estimate
the extent of non-uniqueness in the calibration of
pesticide leaching models. The use of methodologies
incorporating a framework for dealing with non-
uniqueness in parameter estimation and subsequent
extrapolation, such as that proposed by Beven and
Binley,®° deserves investigation.

Another pitfall of calibration is the ‘lumping’ of
parameters. Here, lumping refers to the attribution to
a parameter of a value that does not reflect its
theoretical meaning. This is held to occur during the
calibration process, rather than being inherent in the
model. Lumping may originate from the facts that (1)
the model may not be intrinsically capable of simulat-
ing the experimental data (eg by not including a
description of key processes affecting the fate of
pesticides), (2) the data may be of poor quality and
uncertain, (3) other model input parameters may have
been attributed inadequate values or (4) multiple sets
of parameter values may satisfy the conditions to be a
solution in ill-posed calibration problems. Lumping
thus reflects inaccuracies, uncertainties and limitations
associated with experimental data, modelling and
calibration. Lumped parameters can usually only be
obtained by calibration and have lost their physical,
chemical or biological definition. Hence, lumped
values will only be valid for the specific set of
conditions for which they were obtained and will be
of little value for deriving information regarding the
specific processes controlling transport and fate® and
for extrapolation purposes.

The degree of influence of the modeller on calibra-
tion results is also a significant issue in calibration.
Since calibration procedures are left to the discretion
of the modeller, differences are expected with respect
to the selection of parameters to be calibrated, the
variation applied to their values, the setting up of
automatic calibration packages, where appropriate,
and the assessment of the goodness-of-fit between
measured and simulated data. The user-subjectivity in
the parameterisation and calibration of pesticide
leaching models is established™®® and may prevent
model evaluation in some instances.>!

There are numerous examples of calibrated values
substantially differing from the values initially ex-
pected for the scenario considered (ie those used in the
initial parameterisation of the model). Carsel ez al®*
calibrated the PRZM model against field data for
leaching of aldicarb, and both the decay constant in
the lower zone and the linear sorption distribution
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coefficient had to be increased by a factor of ca 2 to
reach an adequate description of the data. Francaviglia
et al’® reported the need for the use of unrealistic
values of bulk density and field capacity to calibrate
PELMO against a lysimeter dataset. Mills and
Simmons®? had to increase laboratory sorption values
in the top 5 cm of the soil by a factor of 10 and consider
a linear increase of dispersion with depth to improve
their fit to the data. Similarly, sorption coefficients for
aldicarb derived from a calibration were outside the
literature range.>> Villholth er al/®®> found that the
sorption distribution coefficient derived by calibration
against experimental data was about an order of
magnitude smaller than that derived in the laboratory.
Thorsen et al. 2> could only improve the simulation of
the leaching of a pesticide in lysimeters by violating the
physical description of the soil column.

3.10 Assessment of the parameter values derived
from calibration

Owing to the non-uniqueness of calibrations and the
potential for parameter lumping, changes in parameter
values resulting from calibration need to be carefully
assessed. Two approaches are typically used. First,
calibrated parameters can be assessed against values
used in the initial input file. Initial values usually
reflect the best estimate of an adequate value the
modeller can make on the basis of laboratory or field
experiments, review of the literature or expert judge-
ment. It is particularly critical to assess whether a
calibrated value falls within the range of uncertainty
expected for a particular parameter. Although cali-
brated pesticide properties derived by Carsel ez al°!
were varied within a factor of ca 2 of the initial
estimates for these parameters, they were within the
range of uncertainty as estimated by a literature
review.

The second approach to assess parameter values
derived by model calibration is to use the calibrated
values to generate model output which can then be
compared to data different from those used in the
calibration. Thorsen ez al?> consider that parameter
values derived against an experiment under controlled
conditions where less complex environmental condi-
tions prevail should be tested against a dataset
acquired under more complex conditions. The cross-
validation step of the calibrated parameters against a
dataset different from that used in the calibration is
considered important,? especially if the calibration is
used to derive values for sorption and degradation
which are to be considered within pesticide registra-
tion.*> Such testing exercises may include, in the case
of a field drainflow study, (1) the calibration of the
model hydrology against soil moisture contents in the
profile and a verification against drainflow volumes,
(2) the calibration of the model against pesticide
residues and a verification against pesticide concentra-
tions in drainflow, although the use of soil residue data
for assessing pesticide leaching has been ques-
tioned,””** and (3) the calibration of the model
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against data for one year and a verification against a
subsequent year. Data collected in independent
experiments have also been used for cross-validation.
Gottesbiiren ez al*® estimated sorption and degrada-
tion parameter values by calibrating PEARL and
PESTRAS against lysimeter data and tested the
optimised values against data for pesticide residues
from a field experiment. However, the additional
experimental data available could be directly inte-
grated into the calibration instead of being used for
separate evaluation. Increasing the amount of data
available for calibration is expected to decrease the ill-
posed nature of the calibration problem and hence
non-uniqueness issues in the calibrated parameter
sets.”> A possible refinement to the calibration of
pesticide leaching models and the evaluation of
calibrated parameter sets could therefore include (1)
an initial parameter estimation based on a calibration
against a given experimental dataset, (2) a simulation
using calibrated parameters with a comparison to data
different from those used in the initial calibration, and
(3) a model calibration integrating all available
experimental data using calibrated values derived in
step (1) as starting values for parameters to be
estimated and strict limits on the variation of these
parameters.

A discrepancy between measured and simulated
data in the cross-validation run may not solely be
attributed to inadequate calibrated parameter values,
since the lack-of-fit might also be due to model
deficiencies (the cross-validation is sometimes used
as a model testing method) or the attribution of
inadequate values to parameters other than the
calibrated ones. Parameters should not be allowed to
be varied outside their ‘reasonable range’ during the
calibration'®®! and setting a parameter to a specific
value merely to achieve a good fit to the measured data
should be avoided.”! In some instances, substantial
effort put into a calibration does not significantly
improve the fit to the data. A poor match may suggest
an inadequacy in the conceptual model, an error in the
numerical solution, a poor set of parameter values, a
poor set of experimental values or some combination
of these. It may not be possible to distinguish between
these different sources of error. Discrepancies between
expected and calibrated values should be discussed
and assumptions on the likely cause of such discre-
pancies proposed. The uncertainty left in the model
parameters after calibration should be acknowledged
and adequately accounted for in subsequent model
applications.?

4 GUIDELINES FOR THE REPORTING OF
CALIBRATION ACTIVITIES

Given the diversity in modelling situations and the
importance of written communication when regulators
assess modelling studies, it appears that the most
appropriate way to improve quality in the modelling
(including model parameterisation and calibration)
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Table 2. Guidelines on the reporting of calibration activities carried out for pesticide registration. Reporting of calibration activities is expected to provide answers to
the following questions

Introduction
What was (were) the specific aim(s) of the calibration?
Has there been any previous modelling activity for either the experimental site or the compound of interest?

Critical assessment of the experimental data used for calibration
What data were measured in the experimental study?
How many replicates were there?
What was the quality of the replication?
Were any unusual conditions experienced during the experimental period (weather conditions; flooding or freezing conditions)?
Were there difficulties with regard to operational (eg failure of the monitoring equipment) or analytical (eg analytical
replication) procedures?
What were the limits of detection and quantification?
Were difficulties encountered in the identification or quantification of compounds?
Were there missing data for a period? Were there outliers?
What were the main uncertainties related to the data? What overall confidence should be assigned to the experimental data?

Detailed justification of the choice of a specific pesticide leaching model for the calibration

Which model (version, release date) was used?

What was the rationale behind the choice of the particular model used?

Is the model a priori suitable for describing the experimental data?

Were there processes important for describing the data not explicitly accounted for in the model? if so, were these processes
accounted for in the modelling?

Have there been previous studies conducted with this model with the same compound? With the same soil? How did the model
perform?

Detailed description of the initial parameterisation of the model and of the selection of parameters to be calibrated

How were values for the input parameters chosen for the initial parameterisation? Which values were determined by independent
experiments? Which were determined by expert judgement or educated guess?

Where did the main uncertainties in the parameterisation lie?

Was information on the sensitivity of the model available? Was the sensitivity information transferable to the current modelling
exercise?

If either no information was available on the sensitivity of the model or the information was not transferable, was a small-scale
sensitivity analysis conducted?

If a small-scale sensitivity analysis was not conducted, how were the parameters to be varied in the calibration selected?

Detailed description of the calibration procedures used

Which experimental data were used in the calibration?

In the case where replicates were available, were the data for only one replicate considered in the calibration? Alternatively, how
was the information from the different replicates combined? How was conflicting replication handled (eg differences in flow
volumes for a replicated lysimeter experiment)?

How were concentrations below the limit of quantification handled?

How were outliers or missing samples (where applicable) handled?

What were the assumptions made for the concentrations between two sampling dates (drainflow studies)?

Which model output(s) was (were) used in the calibration?

Could the model output be directly compared to the experiment data (note that a post-processing is required in most cases)? If not,
how was model output or the experimental data post-processed? Provide a numerical description of the post-processing
performed.

Was the calibration done manually (trial-and-error calibration) or was it performed automatically?

In the case of a manual calibration

How was the goodness-of-fit between model output and experimental data assessed? Visually through graphical displays?
Numerically using statistical indices? Using both types of assessment?

What was the main target of the calibration? Was it peak values, low values, average values, timing of peaks, first detection,
detailed pattern, general trend?

Was the calibration performed sequentially (eg calibration of the hydrological part of the model then calibration of the pesticide
section)?

Were parameters calibrated sequentially for one particular set of output (ie one parameter after the other)?

How many runs were carried out to achieve the end results?

What criterion was used to stop the calibration?

In the case of an automatic calibration

Which package was used? Which version of the package?

How was the objective function defined?

Were (some) parameters transformed?

Which weights were assigned to the experimental observations?

Was any relationship specified between parameters?

Were all the input parameters calibrated simultaneously?
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How many iterations and runs were necessary to achieve convergence?

Were consistent calibration results obtained when different starting values were specified?

What was the correlation between parameters during the calibration (as reported by the calibration package)?

Did the residuals show a particular pattern or were they randomly distributed?

Was the visual examination of the fit to the observations satisfactory when using the final set of calibrated parameters?

Assessment of calibration results

By how much did the parameters have to be changed to get a good fit to the data? Are the calibrated values plausible?
Reasonable? Do they fit with what is known about the variability and uncertainty of these parameters?

Was a satisfactory (visually and statistically) fit to the data obtained? If not, what could it be attributed to (Inadequate choice of
parameters to be varied? Inadequate values for parameters not included in the calibration? Inadequate calibration procedures?

Inability of the model to describe the data?)?

Cross-validation of the set of calibrated parameters against other model output or against another field dataset
How much uncertainty has been left in the parameters after calibration?
Does the calibrated parameter set give satisfactory results when considering an output other than that used for the calibration?
Is there a good fit between model predictions and experimental data when the calibrated set of parameters is used to describe

another dataset?

Conclusions

How much confidence should be assigned to the final values attributed to the parameters? Where do the uncertainties lie?
Can the results of the calibration be used for the intended purpose defined in the introduction?

Tables and figures

The following tables and figures are useful to assess the confidence that should be assigned to the calibration results:
A comparative table with initial (from the initial model parameterisation) and final (calibrated) values for the parameters included in

the calibration,

A table comparing values of statistical indices (at least the sum of squared residuals) before and after the calibration (where

appropriate),

A figure showing a comparison between the experimental data and the model predictions for the initial and calibrated runs (charts

against time or depth for the variable used in the calibration),

A figure showing a comparison between the experimental data and the model predictions for the initial and calibrated runs (charts
against time or depth for the variable(s) measured in the field, but not used in the calibration),

Afigure plotting measured versus simulated data with a line of perfect agreement (or 1:1 line) for the variable used in the calibration
and for other variables measured in the field, but not used in the calibration.

and to decrease the associated uncertainty is to issue
guidelines on the reporting of the modelling. Such
guidance provides flexibility to modellers, as opposed
to guidelines on the modelling itself.”® Recommenda-
tions for parameterising and calibrating pesticide
leaching models have been issued and have highlighted
the need for quality reporting.>!° However, the
aspects that should be included in reports have not
been explicitly set out. Guidance on the reporting of
calibration activities with pesticide leaching models is
proposed in Table 2. The guidelines are intended to be
non-country-specific and are generic in nature. It is
hoped that the guidelines will raise awareness among
modellers of the issues associated with the calibration
of pesticide leaching models. Their use is expected to
improve calibration activities as a whole and help
modellers and regulators to assess the confidence that
should be attributed to predictions based on calibrated
parameters.

5 CONCLUSIONS

Complex deterministic models are being used in
pesticide registration in Europe to assess the potential
for a pesticide to impact on the environment. Within
this context, calibration may be used to derive input
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parameters which are difficult to obtain from inde-
pendent measurements, to back-derive targeted par-
ameter values, to validate the use of a model or to
establish the basis for subsequent extrapolations. The
need for calibration is controversial within the
pesticide modelling community. Some individuals
consider that calibration is a pre-requisite to a reliable
simulation of pesticide fate, whereas others argue that
a calibrated set of parameters is only valid for the
conditions at hand and should not be used for other
scenarios.

The calibration of leaching models is clearly one of
the most arduous tasks a pesticide fate modeller is
faced with. The success of a calibration is primarily
limited by the nature, amount and quality of the
available data, the appropriateness of the model used,
the effectiveness of the applied calibration technique,
the time available, computer power, expertise and
financial resources.?®> Within the scope of the cali-
bration of pesticide leaching models, the main factors
which may lead to inappropriate calibrations include
the lack of substantial data or their poor quality, the
use of a model which is not capable of describing the
experimental dataset, the inadequate selection of
parameters to be varied and inadequate calibration
procedures. Given these uncertainties, the inherent
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nature of pesticide leaching models (non-linearity,
large correlation between parameters) and the differ-
ences between calibration approaches adopted by
individuals, it is clear that interpreting the strength of
a calibration and resulting model output is no simple
matter. The default assumption should be that cali-
bration results are uncertain, if not demonstrated
otherwise.

Given the importance of calibration activities within
pesticide registration and their potential limitations,
the regulator should be provided with sufficient
information to allow an assessment of the confidence
to be assigned to results from calibration or from
extrapolation based on calibrated parameters. Use of
the guidelines proposed in the present paper would
help regulators in their assessment and indirectly
improve calibration practice.
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