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Sensitivity analyses for four pesticide leaching
models
Igor G Dubus,∗ Colin D Brown and Sabine Beulke
Cranfield Centre for EcoChemistry, Cranfield University, Silsoe, Beds MK45 4DT, UK

Abstract: Sensitivity analyses using a one-at-a-time approach were carried out for leaching models which
have been widely used for pesticide registration in Europe (PELMO, PRZM, PESTLA and MACRO).
Four scenarios were considered for simulation of the leaching of two theoretical pesticides in a sandy
loam and a clay loam soil, each with a broad distribution across Europe. Input parameters were varied
within bounds reflecting their uncertainty and the influence of these variations on model predictions
was investigated for accumulated percolation at 1-m depth and pesticide loading in leachate. Predictions
for the base-case scenarios differed between chromatographic models and the preferential flow model
MACRO for which large but transient pesticide losses were predicted in the clay loam. Volumes of
percolated water predicted by the four models were affected by a small number of input parameters
and to a small extent only, suggesting that meteorological variables will be the main drivers of water
balance predictions. In contrast to percolation, predictions for pesticide loss were found to be sensitive
to a large number of input parameters and to a much greater extent. Parameters which had the largest
influence on the prediction of pesticide loss were generally those related to chemical sorption (Freundlich
exponent nf and distribution coefficient Kf ) and degradation (either degradation rates or DT50, QTEN
value). Nevertheless, a significant influence of soil properties (field capacity, bulk density or parameters
defining the boundary between flow domains in MACRO) was also noted in at least one scenario for all
models. Large sensitivities were reported for all models, especially PELMO and PRZM, and sensitivity was
greater where only limited leaching was simulated. Uncertainty should be addressed in risk assessment
procedures for crop-protection products.
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1 INTRODUCTION
Sensitivity analysis of mathematical models consists
in investigating the relationship between model input
and output.1 The information derived from sensitivity
analyses can be used in several ways. First, analysis of
the sensitivity of a model can be considered an essential
part of its development2,3 and evaluation,3,4 since it
provides the modeller with an opportunity to identify
deficiencies in the theoretical structure of models5

and problems in their operation.2 Second, sensitivity
information can be used for model simplification
and refinement.6 For instance, if a parameter has
been shown to have little effect on the model
outcome, the model may be simplified by making
this parameter a constant5 or eliminating those
terms utilising the parameter.2 Third, it can help to
identify those parameters which require the greatest
accuracy in their determination7 and which require
the most (or least) attention when parameterising
models.8,9 Also, sensitivity information is useful to
select the relative priority of parameters to be varied
when model calibration is undertaken10,11 or to

be included in probabilistic modelling.12 Fourth,
sensitivity information is useful to interpret model
output effectively4,6 and improve the credibility of
modelling results.13 Finally, the information can be
used for guiding effort in data collection for deriving
model input parameters,14 designing field studies,4 but
also for identifying areas where additional research and
further model development is needed.2,15

A wide range of models are used to assess
the environmental fate of crop-protection prod-
ucts and, particularly, their potential transfer to
surface and ground water following an applica-
tion to an agricultural field. Four models have
mainly been used in Europe in the last five to
ten years for assessing the potential for leaching
to groundwater within the scope of pesticide regis-
tration: PRZM,16,17 PELMO,18,19 PESTLA20,21 and
MACRO.22,23 PESTLA has recently been superseded
by PEARL24 although most of the model descrip-
tions remain broadly the same. Some information on
the sensitivity of these models exists.2,4,5,7,9,20,22,25–27

However, the information is difficult to use in practice
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because sensitivity analyses have been conducted
using a range of techniques and results may not be
directly comparable from one study to another,2,7,9

(2) may have concentrated on a few input param-
eters only,7,22,25 and (3) may have been generated
for one particular scenario only.5,22 Information on
sensitivity analysis is of limited benefit at lower tiers
of the risk assessment where fixed assumptions and
scenarios are considered. However, the information
becomes of real value at higher tier levels where tai-
lored complex modelling is carried out to predict the
fate of pesticides.

In order to provide results with a wide applicability,
sensitivity analyses were carried out for PELMO,
PRZM, PESTLA and MACRO using a standardised
procedure for the four models. A simple approach to
sensitivity analysis was adopted where each parameter
was varied one after the other, all other parameters
being kept at their nominal values (one-at-a-time
sensitivity analysis). A total of four leaching scenarios
were generated and model input parameters were
varied within bounds reflecting their uncertainty.
Input parameters for the four models were ranked
according to their influence on model predictions for
water percolation and pesticide loss by leaching.

2 MODELLING METHODS
2.1 Base-case scenarios
Results of sensitivity analyses for environmental
models are known to be site and condition specific.8

Four base-case scenarios were thus considered in
this study to encompass a range of environmental
conditions with respect to pesticide leaching. The
scenarios were compiled by simulating the fate of two
hypothetical pesticides in two soils.

Sorption and degradation properties for the two
theoretical pesticides were chosen to allow significant
leaching of the compounds at 1-m depth. Pesticide
1 has a Koc value of 20 ml g−1 and a laboratory
DT50 of 7.8 days at 20 ◦C whilst Pesticide 2 has
a Koc of 100 ml g−1 and a laboratory DT50 of
23.3 days at 20 ◦C. Degradation of the two compounds
was assumed to follow first-order kinetics. Although
hypothetical, the properties of the two compounds fall
within the range of those registered for use in Europe.9

Modelling was undertaken for a sandy loam and
a clay loam soil to give contrasting behaviour with
respect to contaminant transfer. Specific soils were
selected within the broad categories on the basis
of their use in an earlier study.28 Soils from the
Wick series are deep, uniformly coarse textured, free-
draining sandy loams formed on loose, sandy or
sandy gravelly glacial, fluvioglacial or river terrace
deposits.29 They have low water retention and, under
arable cultivation, low organic matter contents and
therefore readily transmit a wide range of pollutants.
Soils from the Wick series and their hydrological
equivalents in Europe are presented in Fig 1 and
cover 190 000 km2 (4% of the European land area
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Figure 1. Wick soils and their hydrological equivalents in Europe.
Hydrological equivalents were taken as free-draining, uniformly
textured coarse Cambisols, Fluvisols, Arenosols and Regosols.

2.2501.8001.3509004500 225 Kilometers

Figure 2. Hodnet soils and their hydrological equivalents in Europe.
Hydrological equivalents were taken as all medium loamy and silty
chromic Luvisols.

shown on Fig 1).30 Soils from the Hodnet series are
deep, fine loamy, reddish soils formed on interbedded
reddish sandstones and mudstones.29 They have
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Table 1. Physico-chemical and hydraulic properties for the two soils selected for the modelling

Wick Hodnet

0–20 cm 20–50 cm 50–75 cm 75–100 cm 0–33 cm 33–60 cm 60–80 cm 80–100 cm

Physico-chemical properties
Organic carbon (%) 1.70 0.80 0.30 0.20 1.15 0.48 0.40 0.30
Bulk density (g cm−3) 1.35 1.45 1.41 1.53 1.39 1.62 1.55 1.48
Sand (%) 57 70 73 77 33 42 29 26
Silt (%) 33 20 16 9 48 42 48 55
Clay (%) 10 10 11 14 19 16 23 19
Texturea SL SL SL SL CL ZCL CL CL

Water retention datab

W0kPa (%) 46.6 39.6 39.0 34.3 46.8 38.8 41.5 44.0
W5kPa (%) 27.8 19.1 14.7 19.2 34.9 30.8 32.2 35.8
W10kPa (%) 24.1 17.0 11.7 16.4 33.7 29.9 31.4 35.0
W40kPa (%) 19.7 14.2 8.7 13.4 31.2 26.7 28.9 31.8
W200kPa (%) 15.1 10.8 6.0 9.8 25.1 24.2 24.5 26.6
W1500kPa (%) 10.5 7.9 4.4 7.7 16.8 17.9 19.9 20.1

a Texture given according to the UK classification; SL: sandy loam; CL: clay loam; ZCL: silty clay loam.
b Volumetric water content at a given pressure.

slowly permeable horizons in the subsoil which restrict
the downward percolation of water and these soils
are occasionally waterlogged. Soils from the Hodnet
series and their hydrological equivalents in Europe are
presented in Fig 2 and represent 43 000 km2 (1% of
the European land area shown on Fig 2).30 Selected
physico-chemical properties and water retention data
for the two soils are presented in Table 1. A 1-m
deep profile was simulated for both soils to allow
direct comparison of leaching to depth and to tie with
current practices in risk assessment for pesticides in
groundwater within the EU.31

A winter wheat crop was simulated in each year
and emergence, maturation and harvest dates were set
to 12 October, 24 June and 7 August, respectively.32

Both compounds were considered to be applied on 1
November in the first year only at an application rate
of 2.0 kg ha−1. No correction was made to account for
interception of the sprayed solution by the crop.

Weather data were selected from long-term records
for Silsoe (Bedfordshire, UK; latitude 52.0 ◦N,
longitude 0.4 ◦W). The year 1979 was chosen from
a 30-year (1965–1994) dataset as being wetter than
average (700 mm of rainfall compared to a 30-
year mean of 575 mm; 97th percentile), especially
in the winter and the spring periods. This volume
of rainfall is typical for large parts of Europe.
Potential evapotranspiration (PET) was calculated
outside the models using the Penman–Monteith
equation.33 The data for 1979 were repeated for
10 years. The reason for repeating a year rather
than taking real meteorological data for 10 years
is that models were run for the minimum time
that encompassed full leaching breakthrough (ie
predicted concentrations returned to zero) of the
two pesticides. Having the same weather data
between years meant that the comparison between
modelling scenarios with different duration was
still meaningful.

2.2 Modelling strategy and automation of
modelling tasks
Sensitivity investigations concentrated on the four
models which have been used extensively in Europe
for the assessment of leaching within the scope of
pesticide registration. These were the PEsticide Leach-
ing MOdel (PELMO; version 3.00, July 1998),18,19

the Pesticide Root Zone Model (PRZM; Version
3.14β, January 2000),16,17 the PESTicide Leaching
and Accumulation model (PESTLA; version 3.4,
September 1999)20,21 and the MACRO model (ver-
sion 4.1, July 1998).22,23 The Dutch model PESTLA
has been extensively used for registration purposes in
The Netherlands and other European countries in the
last few years, but has recently been superseded by
PEARL (Pesticide Emission Assessment at Regional
and Local scales) following its release in 2000.24

Comparison tests were undertaken for the Dutch
standard scenario and showed that PESTLA and
PEARL predicted the same concentrations at levels
>1 µg litre−1 while slightly larger concentrations were
obtained with PEARL when smaller concentrations
levels (<0.1 µg litre−1) were simulated. Differences
reported for the standard scenario were attributed
to changes to the definition of the scenario (bot-
tom boundary condition) and to alterations to the
numerical description of transformation processes and
soil temperatures.24 Specific versions of selected pes-
ticide leaching models (commonly termed ‘FOCUS
versions’) have recently been released by the FOCUS
groundwater scenarios working group to enable first-
tier assessments of the potential for leaching to depth
in Europe.31 These releases were not available at the
time the sensitivity analyses were carried out and inves-
tigations were undertaken on the very latest versions of
the models available at the time. Although the models
used here predated FOCUS releases, it can be consid-
ered that they are similar in their behaviour to those
implemented in the FOCUS framework.
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The PELMO model was developed from an early
version of PRZM and the two models are hence
quite similar. They both rely on a description of
soil hydrology based on a ‘tipping-bucket’ approach
where water will only move to the next soil layer
if field capacity is exceeded. Solute transport is
simulated using the convection–dispersion equation.
Both models implement the Freundlich equation for
describing sorption and assume first-order kinetics
for degradation. PRZM also enables the use of a bi-
phasic equation for this latter process. Soil erosion
is simulated using the universal soil loss equation,
while a modified Soil Conservation Service curve
number technique is used for run-off. Both PRZM
and PELMO can simulate the loss of pesticide
resulting from volatilisation. PESTLA implements
Richards’ equation and the convection–dispersion
equation for simulating water flow and solute
transport, respectively. As for PRZM and PELMO, the
Freundlich equation and first-order kinetics are used
to simulate sorption and degradation, respectively.
Volatilisation and loss of pesticides to drainage
are simulated, but not soil erosion and run-off.
The model includes a range of bottom boundary
conditions and can simulate the fluctuation of a
water table in the profile. MACRO is the only one
of the four models which includes a description
of preferential flow processes by dividing the total
soil porosity into two flow domains (micropores and
macropores). Soil water flow and solute transport in
the micropores is simulated using Richards’ equation
and the convection–dispersion equation, respectively,
while fluxes in the macropores are based on a simpler
capacitance-type approach with mass flow. Sorption
is simulated using the Freundlich equation and the
distribution of the sorption sites between micropores
and macropores must be specified. First-order kinetics
is used to simulate degradation and half-lives need to
be provided for the solid and liquid phase of the
micropores and macropores. MACRO can simulate
losses by drainage, but does not include a description
of volatilisation processes. As for PESTLA, a range
of bottom boundary conditions is available. Further
comparison of the process descriptions in the four
models can be found elsewhere.34

Models were parameterised to simulate the leaching
of the two pesticides in the two soils. Run-off, erosion
and volatilisation subroutines were switched off in the
modelling. The bottom boundary condition needs to
be specified in PESTLA and MACRO and this was
set to a free draining profile. Increase of sorption
with time was not simulated to maintain consistency
of results between those models which provide a
description of this feature and those which do not.
No calibrations were undertaken to attempt to match
model predictions for water leaching and pesticide
loss between the four models. The parameterisation
of the models was based on measured properties as
much as possible. Simulations were carried out until
full leaching of the two pesticides was achieved or for

a set period where running time was not a limiting
factor. This resulted in differences in the number of
years run between models and scenarios. However,
comparison of sensitivity results between different
scenarios remained meaningful because of the use
of repeated weather data. The input files for the four
leaching scenarios and associated model predictions
for water leaching and pesticide loss are referred to as
‘base-case simulations’ henceforth.

For all models, degradation rates were supplied
to the models as laboratory values and model
subroutines for corrections of degradation for moisture
and temperature effects were therefore activated.
Degradation at depth was related to that in the topsoil
using the equation reported by Jarvis et al,35 which
accounts for the decrease in microbial activity with
depth and the change in pesticide availability arising
from sorption in the different horizons. Sorption was
assumed to be proportional to organic carbon content
in the different horizons and to be described by a
non-linear Freundlich isotherm (nf = 0.9). Sorption
distribution coefficients (Kd) were introduced directly
into the model, except for PESTLA for which
a Kom (sorption coefficient normalised to organic
matter) value for the topsoil was used. The need
to minimise running time within the scope of the
present exercise which involved a large number of
model runs meant that the pre-run duration was
limited to the time between the start of the year and
the pesticide application in the first year (11 months).
Initial moisture contents in the different horizons at the
start of the simulations were set to field capacity values.

Modelling tasks were automated using the SENSAN
(SENSitivity ANalysis) tool which is part of the inverse
modelling PEST package.36 The package facilitates
the sensitivity analysis process by automating the tasks
of adjusting specific model inputs, running the models,
recording their values, archiving the output files
and then recommencing the whole cycle. SENSAN
interferes with models using their input and output
files only and is broadly model independent. It was
thus possible to link SENSAN to the four pesticide
leaching models without altering their code.

2.3 Approach to sensitivity analysis
Model sensitivity can be assessed using a range
of techniques varying in their complexity and
sophistication.6,15 Differences between the techniques
have been discussed37 and assessed.3 Here, we report
on the simplest form of analysis, referred to as
one-at-a-time sensitivity analysis15 or ceteris paribus
approach.37 This involves varying input parameters
independently one at a time, all other parameters
being constant, and observing the resulting influence
on model predictions. This form of sensitivity analysis
was selected because it is easy to understand by non-
experts, relatively simple to implement and because
it provides a direct assessment of sensitivity without
using any transformation in the relationship between
model input and model output. In contrast, Monte
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Carlo methods for sensitivity analysis rely on the
linearisation of this relationship and this may lead to
the introduction of a bias in the sensitivity assessment
for highly non-linear formulations such as pesticide
leaching models.9,38 Disadvantages of the one-at-a-
time approach are that (1) it is more computationally
intensive than other methods when the analysis
involves a large number of parameters,3 (2) it is not
suited to the study of the influence of large variations
of input parameters on model predictions, and (3) it
does not take into account interactions resulting from
the simultaneous variation of multiple parameters.

A number of studies have focussed their sensitiv-
ity analysis on those few model input parameters
which are expected to be the most influential.39,40

Here, the number of parameters included in the anal-
yses was maximised to ensure that sensitivity results
would not reflect prior judgement on model sensitiv-
ity. In some instances, variations of a number of model
input parameters were linked. This was particularly the
case for parameters which varied with depth. In these
instances, the variation of parameters at depth (‘slave
parameters’) was linked to that of parameters for the
topsoil (‘primary parameters’). For instance, a given
increase in Kd values in the topsoil was supported
by the same relative increase in Kd values at depth.
The total number of parameters (primary and slave
parameters) which were varied in the sensitivity anal-
yses was 44, 40, 142 and 99 parameters for PELMO,
PRZM, PESTLA and MACRO, respectively. Param-
eters which were included in the sensitivity analyses
are presented in Appendices 1 to 4.

In contrast to studies where model input has been
varied by standard percentages regardless of the extent
of the variation expected for specific model inputs,2,26

parameters in the present study were varied within
a range which reflected their uncertainty. A broad
definition of uncertainty was adopted here and varia-
tion ranges not only reflected variability in the field,
but also uncertainty associated with approximations
and inaccuracies, eg differences in sample preparation,
variability in laboratory determinations, measurement
error.41 Maximum variation ranges were assigned to
input parameters by expert judgement following their
discussion between the three authors. In general,
parameters which are determined experimentally were
varied symmetrically (ie same variation for increase
and decrease of the parameter). Parameters related
to sorption and degradation were considered as rela-
tively uncertain and it was decided that a reasonable
range of variation for most was obtained by multiply-
ing and dividing the average value by a factor of two.
Parameters that are not readily determined experi-
mentally were varied according to expert judgement.
Where appropriate, model developers were contacted
to discuss particular parameter variations. Attention
was paid to vary the parameters in the same way
between models. Each input parameter was varied
by a number of increments (from six to 24 depend-
ing on the input parameter considered) which were

broadly proportional to the variation applied. Mini-
mum and maximum deviations applied to parameters
are presented in Appendices 1 to 4.

The outputs used to estimate the sensitivity of the
four models were the cumulative percolation of water
at the bottom of soil cores (known as ‘recharge’ in
PRZM and PELMO) and the cumulative areal mass
of pesticide lost via leaching (subsequently referred to
as ‘pesticide loss’). For PRZM, cumulative recharge
was taken from the annual values for the ‘leaching
output’ from the bottom layer of the 1-m profile (cm
of water). Cumulative pesticide losses were computed
from annual values for ‘pesticide leached below core
depth’ (given in kg ha−1). For PELMO, cumulative
recharge was calculated from the annual values of
‘recharge below soil core’ (in cm of water) which can
be found in the ‘wasser.plm’ output file. Similarly,
cumulative pesticide losses were computed from val-
ues of ‘pesticide leached below core’ (given in kg ha−1)
in the ‘chem.plm’ output file for each year of the sim-
ulation period. For PESTLA, annual percolation was
extracted from the file ‘bawafc.out’ (PRBT = water
percolated annually through the bottom of the sys-
tem, in mm). Pesticide losses were computed from
the cumulative loss per area out of the bottom of
the system (in kg ha−1) from the file ‘leacos1.out’.
For MACRO, the binary output file produced by the
model was post-processed automatically by a batch file
to generate a file with the values of cumulative percola-
tion (MACRO parameter ‘TFLOWOUT’) and cumu-
lative solute leaching (MACRO parameter ‘TSOUT’).
The SENSAN instruction file then read the last values
of the file. Cumulative solute leaching was converted
from mg m−2 to g ha−1. Predicted percolation volumes
were all converted to mm while model predictions for
pesticide loss were expressed in g ha−1.

2.4 Assessment of model sensitivity
The assessment of model sensitivity was based on the
ratio of the relative variation in model output to the
relative variation in model input. For each variation
increment, the relative variation in model input and
model output were calculated as follows:

Input variation = I − IBC

IBC
∗ 100 (1)

Output variation = O − OBC

OBC
∗ 100 (2)

where I is the value of the input parameter, IBC is the
value of the input parameter for the base-case scenario,
O is the value of the output variable, and OBC is the
value of the output variable for the base-case scenario.

The ratio of variation (ROV) can be defined
as follows:

ROV = Output variation
Input variation

(3)

Or,

ROV = O − OBC

I − IBC
∗ IBC

OBC
(4)
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The ratio can be either positive or negative. It takes
negative values if a decrease in an input parameter
results in an increase in the output value or if an
increase in an input parameter results in a decrease
in the output value. The sign of the ratio is not
critical when the aim is to classify input parameters
according to their influence on model output. Hence,
the absolute value of ROV (|ROV|) was considered for
classification purposes.

It was decided to represent the influence of a
particular input parameter by the maximum absolute
ratio of variation (MAROV),

MAROV = Maxi|ROV|, i = 1 to r, (5)

where r is the number of variation increments applied
to a particular parameter.

The larger the MAROV index, the more influence
a parameter has on model output. A MAROV of 1
means that a variation in the model input of x% will
result at maximum in the same variation in the model
output (x%). If MAROV equals 10, the disturbance of
a model input will be propagated through the model

Figure 3. Example of chart showing the variation in MACRO
predictions for percolation in response to the modification of input
parameters. Only the five parameters which have the most influence
on percolation predictions are presented. A brief description of the
parameters can be found in Appendix 4.

and amplified to result in a maximum variation of the
output by 10 times more.

The plotting of the output variation versus the
input variation provides a graphical means to assess
the sensitivity of the model to input parameters. An
example is provided in Fig 3 which presents results

Table 2. Predictions for percolation and pesticide losses by the four models for the four base-case scenarios

Scenario

Wick soil Hodnet soil

Pesticide 1 Pesticide 2 Pesticide 1 Pesticide 2

PELMO
Total number of years run 4 9 7 10
Total percolation per annum (mm)a 242/241 242/241 224/223 224/223
Total pesticide loss predicted at 1-m depth
(g ha−1)

25.7 0.23 0.31 1.11 × 10−7

Total pesticide loss predicted at 1-m depth
(% of applied)

1.29 0.01 0.02 5.53 × 10−6

PRZM
Total number of years run 10 10 10 10
Total percolation per annum (mm)a 350/305 350/305 347/293 347/293
Total pesticide loss predicted at 1-m depth
(g ha−1)

31.7 0.52 0.89 4.04 × 10−3

Total pesticide loss predicted at 1-m depth
(% of applied)

1.59 0.03 0.04 2.02 × 10−4

PESTLA
Total number of years run 8 8 8 8
Total percolation per annum (mm)a 326/326 326/326 329/329 329/329
Total pesticide loss predicted at 1-m depth
(g ha−1)

38.8 0.61 3.26 0.04

Total pesticide loss predicted at 1-m depth
(% of applied)

1.84 0.03 0.16 2.10 × 10−3

MACRO
Total number of years run 4 6 4 4
Total percolation per annum (mm)a 242/283 242/283 230/271 230/271
Total pesticide loss predicted at 1-m depth
(g ha−1)

33.82 7.52 39.80 87.29

Total pesticide loss predicted at 1-m depth
(% of applied)

1.69 0.38 1.99 4.36

a Percolation in the first year/percolation in subsequent years.
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for the five parameters which most influence MACRO
predictions for percolation. The closer the curve to
the Y axis (the larger the slope of the line linking
the origin and a particular point), the more sensitive
the model to this parameter. In the same way, the
closer the curve to the X axis (the smaller the slope
of the line linking the origin and a particular point),
the less sensitive the model to this parameter. Curves
corresponding to positive influences (an increase in
model output resulting from an increase in model
input or a decrease in model output resulting from a
decrease in model input) are located in the top right
and bottom left quadrants while those corresponding
to negative influences (an increase in model output
resulting from a decrease in model input or a decrease
in model output resulting from an increase in model
input) are situated in the top left and bottom right
quadrants. The MAROV value in these plots of output
variation versus input variation can be read as the
maximum slope of the lines linking the origin to data
points for the various increments. The use of the
maximum slope might lead to a small overestimation
of sensitivity in instances where there is non-linearity
in the response of the model to changes in input
parameters (eg RPIN in Fig 3). Parameters which
mainly displayed non-linearity in their relationship
to pesticide loss were those related to sorption and
degradation.

3 RESULTS
3.1 Simulation of base-case scenarios by the
four models
The four base-cases resulted from simulating the
leaching of Pesticides 1 and 2 in the Wick and Hodnet
soils. Predictions for accumulated percolation and
pesticides losses for the four models are presented in
Table 2. Predicted pesticide breakthrough in leachate
is presented in Figs 4, 5, 6 and 7 for PELMO, PRZM,
PESTLA and MACRO, respectively. Figures 4 and 5
are presented on a monthly time-step while a daily
time-step was used in Figures 6 and 7. The adoption
of a monthly time-step was due to practical difficulties
associated with dealing with the large (>120 MB)
PELMO and PRZM output files generated when
these models were used for 10-year simulations on
a daily time-step. Average pesticide concentrations
calculated over a period of 10 years for the four
base-case scenarios were in the range <0.001 to
3.2 µg litre−1 for the four models (data not shown).
Scenarios can therefore be considered broadly relevant
to the pesticide registration context where a threshold
concentration of 0.1 µg litre−1 in water leaching to 1-m
depth is used as a trigger for further work to investigate
potential groundwater contamination in Europe.

PELMO predictions for percolation (ca 230 mm
per year) were smaller than those by PRZM (ca
300 mm per year). Potential evapotranspiration data

Figure 4. Monthly predictions for pesticide losses by PELMO for the four base-case scenarios.

968 Pest Manag Sci 59:962–982 (online: 2003)



Sensitivity analyses for four pesticide leaching models

Figure 5. Monthly predictions for pesticide losses by PRZM for the four base-case scenarios.

Figure 6. Daily predictions for pesticide losses by PESTLA for the four base-case scenarios.
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Figure 7. Daily predictions for pesticide losses by MACRO for the four base-case scenarios.

were supplied to the model by selecting the option
‘own ET data’, but it later transpired that PELMO
was reading PET as actual evapotranspiration. This
means that parameters related to the calculation
of actual evapotranspiration from potential data
(ANET, AMXD; Appendix 1) were found to have
no influence on model predictions. PELMO and
PRZM predictions for pesticide loss were broadly
similar, reflecting the common root of these two
capacity models. Pesticide loss was only predicted to
occur from December to April each year for PELMO
and from October to April for PRZM, in line with
predicted percolation timings. Slightly larger losses
were predicted by PRZM when compared to PELMO.
For both models, losses were predicted to be larger
for Pesticide 1 than for Pesticide 2 and for the sandy
loam (Wick soil) than for the clay loam (Hodnet
soil). Pesticide leaching profiles were similar for the
two soils, but differed significantly between the two
pesticides. Pesticide 1 was characterised by a leaching
pattern which started at the end of the first year and
which extended over two years, whereas leaching for
Pesticide 2 was initiated at the end of the third year
and lasted for longer. Full pesticide breakthrough was
simulated after 3–9 years for the different scenarios
and maximum monthly loadings were predicted to
occur from 14–53 months and from 6 to 41 months
after application for PELMO and PRZM, respectively.

The PESTLA model simulated similar volumes
of water percolating through the two profiles (326

and 329 mm per year for the Wick and Hodnet
soils, respectively). As for PELMO and PRZM,
total pesticide losses were predicted to be largest
for the scenario involving Pesticide 1 in the Wick
soil and predictions were much smaller for the
three remaining scenarios. Losses were predicted to
be larger for Pesticide 1 than for Pesticide 2 and
for the sandy loam than for the more structured
clay loam. Leaching breakthrough was dependent
on the compound considered. Losses of Pesticide
1 by percolation occurred over a period of one
year and were dominated by a single leaching
event occurring in mid-April, whereas losses were
simulated over 3–4 years for Pesticide 2 and were
more evenly distributed between the years. Although
larger pesticide losses were predicted by PESTLA
when compared to PRZM and PELMO, especially
for the more structured Hodnet soil, the three models
showed a similar behaviour overall.

In contrast to other models, MACRO predicted
losses for both pesticides which were larger in the
clay loam (Hodnet) than in the sandy loam (Wick),
especially for Pesticide 2. This reflects greater leaching
by preferential flow in the more highly structured
Hodnet soil. Pesticide dissolved in water moving
rapidly through the soil profile via macropores may
be subject to less sorption and degradation in the
more reactive upper part of the profile. Losses of
Pesticide 1 were predicted to be larger than those
of Pesticide 2 in the Wick soil, but the reverse was
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predicted in the Hodnet soil. This highlights the
complex interactions between compounds and the soil
environment and, again, the influence of considering
preferential flow processes in the modelling. Leaching
breakthrough was most dependent on soil type rather
than compound. In the sandy loam Wick soil, losses by
percolation occurred over relatively long time periods
(eg over 7.5 and 5 months per year for Pesticide 1 in
the Wick soil) and total leaching occurred over 2 and
4 years for Pesticide 1 and 2, respectively. In contrast,
pesticide losses from the more structured Hodnet soil

were short-lived and dominated by transient peaks in
a single year with much larger daily losses. Maximum
daily losses were 10 and 209 times larger in the clay
loam than in the sandy loam for Pesticide 1 and 2,
respectively.

3.2 Sensitivity of PELMO
Parameters which were found to influence prediction
of percolation by PELMO are presented in Table 3.
Results from sensitivity analyses with regard to
the prediction of water percolation by PELMO

Table 3. MAROV values for model parameters with the largest influence on predictions for percolation. Parameters are presented by decreasing

order of influence (1 = most influential parameter). Only those parameters which were found to influence percolation are included. A brief

description of parameters can be found in Appendices 1 to 4

Scenario

Wick soil Hodnet soil

Ranking Pesticide 1 Pesticide 2 Pesticide 1 Pesticide 2

PELMO
1 WC-FC 0.648 WC-FC 0.641 WC-FC 1.2 WC-FC 1.2
2 WP 0.208 WP 0.208 WP 0.519 WP 0.519
3 CINT 0.003 CINT 0.004 CINT 0.019 CINT 0.020
4 COVM 0.003 COVM 0.004 COVM 0.019 COVM 0.020

PRZM
1 FC 0.457 FC 0.457 FC 0.613 FC 0.613
2 ANET 0.262 ANET 0.262 WP 0.324 WP 0.324
3 AMXD 0.210 AMXD 0.210 ANET 0.290 ANET 0.290
4 WP 0.169 WP 0.169 AMXD 0.235 AMXD 0.235
5 CINT 0.015 CINT 0.015 CINT 0.015 CINT 0.015
6 COVM 0.015 COVM 0.015 COVM 0.015 COVM 0.015

PESTLA
1 CFTB 0.331 CFTB 0.331 CFTB 0.332 CFTB 0.332
2 COFR 0.307 COFR 0.307 COFR 0.304 COFR 0.304
3 G6 0.153 G6 0.153 G6 0.243 G6 0.243
4 G2 0.153 G2 0.153 RSIG 0.134 RSIG 0.134
5 RDTB 0.153 RDTB 0.153 IF1 0.061 IF1 0.061
6 RSIG 0.123 RSIG 0.123 IR1 0.061 IR1 0.061
7 IF1 0.115 IF1 0.115 GCTB 0.03 GCTB 0.03
8 IR1 0.115 IR1 0.115 G4 0.015 G4 0.015
9 GCTB 0.061 GCTB 0.061 G3 0.004 G3 0.004
10 RDS 0.061 RDS 0.061 G2 0 G2 0
11 G1 0.038 G1 0.038 RDTB 0 RDTB 0
12 G3 0.031 G3 0.031 RDS 0 RDS 0

MACROa

1 XMPOR 0.728 XMPOR 0.728 XMPOR 0.856 XMPOR 0.856
2 RPIN 0.274 RPIN 0.274 RPIN 0.371 RPIN 0.371
3 ROOTMAX 0.226 ROOTMAX 0.226 THETAINI 0.320 THETAINI 0.320
4 THETAINI 0.181 THETAINI 0.181 WILT 0.300 WILT 0.300
5 WILT 0.153 WILT 0.153 ROOTMAX 0.280 ROOTMAX 0.280
6 ZALP 0.122 ZALP 0.122 TPORV 0.236 TPORV 0.236
7 ZLAMB 0.114 ZLAMB 0.114 ZALP 0.133 ZALP 0.133
8 CTEN 0.113 CTEN 0.113 CTEN 0.095 CTEN 0.095
9 KSM 0.042 BETA 0.042 ZLAMB 0.054 ZLAMB 0.054
10 TPORV 0.034 KSM 0.034 BETA 0.054 BETA 0.054
11 BETA 0.033 GAMMA 0.033 ZN 0.049 ZN 0.049
12 ZN 0.014 TPORV 0.014 GAMMA 0.021 GAMMA 0.021
13 WATEN 0.013 WATEN 0.013 LAIMAX 0.018 LAIMAX 0.018
14 GAMMA 0.012 ZN 0.012 KSATMIN 0.015 KSATMIN 0.015
15 LAIMAX 0.011 LAIMAX 0.011 RINTEN 0.007 RINTEN 0.007

a Only the 15 most influential parameters are presented.
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were dependent on the soil considered. Recharge
volumes predicted by PELMO were only slightly
affected by changes in input parameters (maximum
MAROV values 0.65 and 1.17 for the Wick and
Hodnet soil, respectively) with the most sensitive
parameters those related to the soil water content
(ie field capacity, initial soil moisture content at
the start of the simulation and wilting point) for
all scenarios. Crop-related parameters which were
considered in this study (maximum interception
storage and maximum soil cover) had little effect
on predicted volumes of recharge. The sensitivity of
recharge was approximately twice as large for the
Hodnet scenarios compared to the Wick scenarios.

In contrast to recharge, the prediction of pes-
ticide losses was very sensitive to some parame-
ters (MAROV > 10; Fig 8). The maximum MAROV
value was >10 000 for the scenario involving Pesti-
cide 2 and the Hodnet soil. Such large sensitivities
may be artefacts resulting from the small pesticide
loss predicted for this particular scenario and the use
of the maximum slope in the definition of MAROV.
However, whilst absolute MAROV values for this spe-
cific scenario may be discarded, results for parameter
ranking according to their sensitivity remain valid.
Sensitivity of PELMO may be related to some extent
to the amount of pesticide loss that was predicted (the

greater the loss, the less sensitive the model), although
this was only verified within soil types in this study.
Figure 8 presents the PELMO parameters ranked by
their influence on pesticide losses for the four sce-
narios. The top six most sensitive parameters were
identical for the four scenarios, although the detailed
ranking of these parameters changed according to the
scenario considered. These included all parameters
related to degradation (degradation rates DEGR, the
factor of increase in degradation when temperature is
increased by 10 ◦C QTEN, the soil moisture for the
incubation during degradation studies ASM, and the
exponent of the equation describing the influence of
moisture on degradation MEXP), the two parameters
related to sorption (the Freundlich exponent NF and
the Freundlich coefficient KF) and two soil param-
eters (the field capacity/initial soil moisture content
WC/FC and the bulk density BUD). Degradation
rates were found to be the most influential parame-
ters for the prediction of pesticide loss in three of the
four scenarios.

3.3 Sensitivity of PRZM
For both soils, percolation volumes predicted by
PRZM were only sensitive to a few parameters.
The magnitude of the change in predicted recharge
when input parameters were varied was rather

Figure 8. Sensitivity results for PELMO to predictions of pesticide losses. Parameters have been ranked by decreasing MAROV values (decreasing
sensitivity). A brief description of the parameters can be found in Appendix 1.
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small (MAROV < 0.7) and it was only marginally
affected by the nature of the soil. The PRZM
input parameter which had the most influence
on predictions was ‘field capacity’, which in the
present study combined the field capacity value
as determined from the water release curve and
the soil moisture content at the beginning of
the simulations (initial soil moisture contents in
the model were set at field capacity). Parameters
which were found to influence the prediction
of recharge were those related to the moisture
status of the soil (field capacity, wilting point), to
the computation of actual evapotranspiration from
potential evapotranspiration data (minimum depth for
extraction of evaporation) and to the description of
the plant cover (maximum rooting depth, maximum
interception storage and maximum areal coverage of
the canopy).

In contrast, prediction of losses of pesticides by
PRZM were very much affected by changes in input
parameters. The magnitude of the sensitivities varied
for the different scenarios (Fig 9). Large sensitivities
were found for all four scenarios (maximum MAROV
value ca 3500) and the largest sensitivities were
associated with Pesticide 2 which was predicted
to leach to only a small extent in both soils. In
the fourth scenario involving Pesticide 2 in the
Hodnet soil, an increase by 10% of the Freundlich

exponent from 0.9 to 0.99 was found to increase
total pesticide losses from 0.004 to 0.37 g ha−1. The
same increase in the Freundlich exponent for the
scenario involving Pesticide 1 and the Wick soil
resulted in a smaller increase in pesticide losses
from 31.7 g ha−1 to 47.6 g ha−1. Figure 9 presents the
15 parameters which were found to most influence
predictions of total pesticide losses by PRZM.
Although the most influential parameters and the
detailed ranking differed for each scenario, the same
parameters were consistently found at the top of the
list. This was particularly obvious for the first six
parameters which were related to pesticide sorption
(Freundlich distribution coefficients and exponent),
pesticide degradation (degradation rates, QTEN) as
well as the description of the soil (field capacity/initial
soil moisture content, bulk density). As for PELMO,
field capacity appeared as one of the most influential
parameters for the predictions of pesticide losses
by PRZM (see for instance the scenario involving
Pesticide 1 in the Wick soil). No clear relationship
could be derived between sensitivity rankings and
pesticide or soil types. Significant similarities were
observed in the results for PRZM and PELMO.

3.4 Sensitivity of PESTLA
Results from the sensitivity analysis for the predic-
tion of percolation by PESTLA are presented in

Figure 9. Sensitivity results for PRZM to predictions of pesticide losses. Parameters have been ranked by decreasing MAROV values (decreasing
sensitivity). A brief description of the parameters can be found in Appendix 2.
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Table 3. A large number of input parameters affected
percolation predicted by PESTLA (12 parameters
for the Wick soil, nine parameters for the Hodnet
soil), but their influence was rather small (MAROV
values < 0.35). Influential parameters included crop
variables (crop factor, extinction coefficients, maxi-
mum rooting depth, maximum leaf area index, maxi-
mum rooting depth allowed by the soil profile), those
related to evapotranspiration (soil evaporation coeffi-
cient, minimum rainfall to reset models used in the
computation of actual from potential evapotranspi-
ration) and those related to the description of the
water release characteristics (parameters of the Van
Genuchten equation).42

PESTLA predictions for pesticide losses were
greatly affected by changes in input parameters
(Fig 10). The magnitude of the sensitivities was
dependent on the different scenarios and was smallest
for the scenario where the greatest losses were
predicted (Pesticide 1 on Wick, maximum MAROV
5.9) and greatest for the scenario where the smallest
losses were predicted (Pesticide 2 on Hodnet,
maximum MAROV value ca 360). In the scenario
involving Pesticide 2 in the Hodnet soil, a modification
of the Freundlich exponent from 0.9 to 0.99 resulted
in an increase of pesticide losses from 0.043 g ha−1

to 0.864 g ha−1. There was a relative consistency in
the ranking for the most sensitive parameters, except

for the scenario involving Pesticide 1 in the Hodnet
soil. The most sensitive parameters were generally
those related to sorption (Freundlich coefficient and
exponent) and degradation (half-life, molar activation
energy of degradation). The organic matter content
was also found to have a relatively large influence on
predicted pesticide losses. In contrast to other models,
the description of sorption used in PESTLA for the
four scenarios made use of Kom and the organic matter
content. In the third scenario involving Pesticide 1 in
the Hodnet soil, the second most sensitive parameter
was the dimensionless exponent n of the equation from
Van Genuchten which describes the water retention
curve. Although the bulk density did not have any
influence on the prediction of percolation volumes,
it had a notable influence (MAROV > 1) on the
prediction of pesticide losses for all scenarios. The
bulk density is used in calculating the repartition of
pesticide between the solid and liquid phase.

3.5 Sensitivity of MACRO
Sensitivity results for MACRO have been presented in
detail elsewhere9 and only the essence of the findings
for the dual-porosity model is presented below. The
sensitivity of MACRO predictions for percolation to
changes in input parameters is presented in Table 3.
No notable difference was found in the ranking of
parameters between the four scenarios. The parameter

Figure 10. Sensitivity results for PESTLA to predictions of pesticide losses. Parameters have been ranked by decreasing MAROV values
(decreasing sensitivity). A brief description of the parameters can be found in Appendix 3.
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which had the most influence on percolation volumes
was XMPOR, the boundary soil water content. This
parameter is one of three (CTEN, XMPOR and KSM)
which define the boundary between micropores and
macropores in MACRO. Other parameters related
to the description of soil water content and water
retention (THETAINI, WILT and TPORV) were
found to have some influence on percolation results.
The influence of the initial soil moisture content
(THETAINI) emphasises that a pre-run of a few
months or years should be carried out to allow
equilibration of the model with respect to water
content in the soil profile.

The 15 parameters which showed the largest
influence on the predictions of pesticide losses
by MACRO are presented in Fig 11. In the
Wick soil, which is coarser textured and more
weakly structured than the Hodnet soil, MACRO
was most sensitive to three parameters related to
the degradation (degradation rates) or sorption of
pesticides (Freundlich coefficient and exponent).
Following these three dominant parameters (and
TRESP, the parameter which describes the influence
of temperature on degradation kinetics, for the first
scenario), the next most influential inputs were related
to the description of the soil hydrology and the
soil (XMPOR, ZN, GAMMA). In the Hodnet soil,
pesticide losses simulated by the MACRO model were

much more influenced by hydrological parameters.
TPORV (the water content at saturation) was the most
and second most influential parameter for the Hodnet
scenarios involving Pesticide 2 and 1, respectively. In
the scenario with Pesticide 2, five out of the six top
parameters were hydrological parameters. The second
most influential parameter for the scenario involving
Pesticide 2 and the Hodnet soil (ZN, pore size
distribution index) is particularly uncertain because
it is difficult to determine experimentally and little
guidance is available. Although the sorption coefficient
(ZKD in Fig 11) was found to greatly influence results
for pesticide losses in the Wick soil (ranked 2 and 3),
its influence was much less pronounced in the Hodnet
soil (ranked 10 and 16).

4 DISCUSSION
The leaching of two pesticides in two contrasting soil
types was simulated using the four main models which
have been used for pesticide registration in Europe in
the last decade. The aim of model parameterisation
within the scope of the present exercise was not to
attempt to provide a good match between predictions
of the different models, ie no model benchmarking was
undertaken. Although differences between leaching
models used for pesticide registration have lessened in
the last decade, they still present their individualities43

Figure 11. Sensitivity results for MACRO to predictions of pesticide losses. Parameters have been ranked by decreasing MAROV values
(decreasing sensitivity). A brief description of the parameters can be found in Appendix 4.
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and this will lead to differences in predictions.11

Present results for the prediction of pesticide loss
suggest that the estimation of the leaching potential
of a compound will be significantly influenced by
the model used. Model selection is therefore likely
to be a significant source of uncertainty in pesticide
fate modelling. A possible way to account for this
uncertainty would be to predict pesticide leaching
using a range of models. Predictions for pesticide losses
by PELMO, PRZM and PESTLA were generally
found to be within a factor of <3 for the sandy loam. In
contrast, little leaching was predicted in the clay loam
by the three models and differences of several orders
of magnitude were noted. The preferential flow model
MACRO contrasted with the three chromatographic
flow models, especially for the finer-textured soil where
a different leaching pattern and greater loss than in the
sandy loam was predicted.

Both the magnitude of the sensitivity and the
detailed ranking of parameters according to their
influence on model predictions were found to be
dependent on the scenario considered. This confirms
the importance of using multiple base-case scenarios,
but also suggests that sensitivity results presented
here should not be used regardless of the modelling
situation at hand. In those instances where the
modelling differs significantly from that presented here
(eg different model output considered, different main
dissipation processes), it is suggested that a limited
sensitivity analysis is carried out.

Although the number of model input parameters
which were varied in the present sensitivity analyses
was large, a number of specific parameters which
can be expected to have a strong influence on model
predictions were left out. For instance, the organic
carbon content was not specified for three of the four
models because Kd values were directly fed into input
files. Organic carbon content has a direct influence on
the calculation of Kd values when these latter values
are calculated from partition coefficients normalised
to organic carbon (Koc) or organic matter (Kom). It is
therefore expected that the organic carbon content will
have a significant influence on model predictions for
pesticide leaching.14 Similarly, neither the influence of
the pesticide application rate nor that of interception of
the spraying solution by the crop were analysed. Since
model runs and the processing of model output were
automated to a large extent, the variation of ‘switch’
parameters controlling the use of subroutines was not
considered. Also, the present results did not account
for less obvious sensitivities such as the influence of
horizon thickness on model predictions.44

Model predictions for percolation were found
to be only slightly affected by variation in input
parameters included in the present study. No
meteorological data were included in the sensitivity
analysis and these parameters were considered
as certain. However, there is evidence of large
measurement errors in meteorological datasets.45

Potential evapotranspiration is particularly uncertain

because different values are produced by different
estimation methods. Given the magnitude of MAROV
values that was found for percolation, the balance
between PET and rainfall is expected to have by far
the greatest influence on percolation predictions.

In most instances, parameters which had the largest
influence on model predictions for pesticide loss
were those related to sorption and degradation and
these results are in line with earlier findings.7,14,20,46

Sorption (Freundlich distribution coefficient and
exponent) and degradation (DT50) parameters are
traditionally determined in the laboratory and the
applicability of these values to simulate field behaviour
is subject to much debate.47 The field environment
being inherently variable in space and time, half-
lives and sorption coefficients should be considered as
variable and uncertain.48,49 Given the strong influence
these parameters have on predictions for pesticide
loss, this will transpose into uncertainty in model
predictions. Uncertainty in the modelling is not limited
to that in these few input parameters and may
originate from a wide range of sources.41 Predictions
from pesticide leaching models should therefore be
considered largely uncertain and it is desirable that
this uncertainty is accounted for in risk assessment
procedures for pesticides.

The exponent of the Freundlich equation which is
used to describe non-linear sorption was found to be
one of the most influential parameters for all models.
The importance of the Freundlich exponent has been
highlighted before.38 Its influence on predictions for
pesticide loss tends to increase with the strength
of sorption.7 Registration procedures for pesticides
in the USA and in Europe has tended to focus
on sorption distribution coefficients and degradation
values as surrogates for estimating potential transfer
in the environment and the importance of the
Freundlich exponent has frequently been overlooked.
The practical implications of current practice such
as averaging parameters of the non-linear Freundlich
equation for different soils50 should be investigated
and the Freundlich exponent should be considered as
important as Koc (or Kom) when estimating pesticide
leaching at low levels.7

A large effect of hydrological parameters on
prediction for pesticide loss was noted in a number
of scenarios for each of the four models used here.
Such comparatively large influences of hydrological
parameters have rarely been reported,26 but can
be expected since water fluxes remain a governing
process for the leaching of solutes to groundwater.10

Field capacity and bulk density values were found to
significantly influence pesticide loss for the capacity
models PRZM and PELMO. This implies that field
capacity needs to be determined with care26 and
uncertainty in this variable should be minimised as far
as possible. Both analytical procedures for establishing
water retention curves and the practical definition of
field capacity differ between countries. Field capacity
is normally estimated as the soil water content at
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a particular water tension from the water retention
curve, but there is no international agreement as to
what this tension should be. A value of ca −33 kPa
is used in the USA and Germany whilst other values
are used elsewhere (eg −5 kPa in the UK, −10 kPa
in The Netherlands). Guidance on the selection of
field capacity values has recently been provided by
FOCUS31 and will help to reduce this source of
uncertainty in the modelling.

Sensitivity results for the two capacity models
PRZM and PELMO were broadly similar, in
accordance with their common root in development.
The number of parameters showing a large influence
on predictions for pesticide loss for these two models
was small compared to PESTLA and MACRO,
but the magnitude of sensitivity exceeded that of
the two models with a more complex description
of hydrology for all four scenarios. A common
preconception is that Richards’ equation models,
and in particular MACRO,51 are more difficult to
parameterise than capacity models and therefore carry
a larger uncertainty in model predictions. Results
presented here suggest that this is unlikely to be the
case and that levels of predictive uncertainty in the
prediction of pesticide leaching might be similar for
the four models or even larger for the capacity models.

Probabilistic modelling and automatic calibration
of models are likely to play an increasing role in
environmental risk assessment for pesticides and it is
important that these activities concentrate on those
parameters which have the largest influence on model
predictions. The data presented offer a starting point
for this process for the four main models which have
been used to predict pesticide leaching in Europe in
the last decade.
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APPENDIX 1
PELMO input parameters considered in the sensitivity analysis and variation ranges applied

Wick soil Hodnet soil

Parameter Description
Nominal

value
Minimum

value
Maximum

value
Nominal

value
Minimum

value
Maximum

value

Parameterisation common to Pesticides 1 and 2
AMXD Maximum active rooting depth (cm) 60 30 100 60 30 100
ANET Depth of evapotranspiration

computation (cm)
15 5 25 15 5 25

ASM Soil moisture during degradation (−) 0.277 0.208 0.347 0.349 0.262 0.436
BUDa Bulk density (g cm−3) 1.35 1.21 1.48 1.39 1.25 1.53
CINT Maximum interception storage (cm) 0.15 0.10 0.30 0.15 0.10 0.30
COVM Maximum soil cover (%) 90 80 100 90 80 100
FEXT Foliar extraction coefficient (cm−1) 0.10 0.05 0.15 0.10 0.05 0.15
MEXP Exponent for moisture correction (−) 0.70 0.42 0.98 0.70 0.42 0.98
QTEN Increase in degradation given a

temperature increase of 10 ◦C (−)
2.20 1.82 2.72 2.20 1.82 2.72

UPTK Plant uptake efficiency factor (−) 0.5 0 1 0.5 0 1
WC-FCa Water capacity, field capacity (−) 0.277 0.208 0.347 0.349 0.262 0.436
WPa Wilting point (%vol) 0.105 0.079 0.132 0.168 0.126 0.210

Parameterisation specific to Pesticide 1
DEGRa Degradation rate (day−1) 0.0893 0.0446 0.1786 0.0893 0.0446 0.1786
KFa Freundlich sorption coefficient

(ml g−1)
0.340 0.170 0.680 0.230 0.115 0.460

NFa Freundlich exponent (−) 0.90 0.72 1.08 0.90 0.72 1.08
PDRA Plant decay rate (day−1) 0.0893 0.0446 0.1786 0.0893 0.0446 0.1786

Parameterisation specific to Pesticide 2
DEGRa Degradation rate (day−1) 0.0298 0.0149 0.0596 0.0298 0.0149 0.0596
KFa Freundlich sorption coefficient

(ml g−1)
1.700 0.850 3.400 1.150 0.575 2.300

NFa Freundlich exponent (−) 0.90 0.72 1.08 0.90 0.72 1.08
PDRA Plant decay rate (day−1) 0.0298 0.0149 0.0596 0.0298 0.0149 0.0596

a Primary parameter to which slave parameters were linked.

APPENDIX 2
PRZM input parameters considered in the sensitivity analysis and variation ranges applied

Wick soil Hodnet soil

Parameter Description
Nominal

value
Minimum

value
Maximum

value
Nominal

value
Minimum

value
Maximum

value

Parameterisation common to Pesticides 1 and 2
A Albedo (−) 0.18 0.12 0.24 0.18 0.12 0.24
AMXD Maximum rooting depth (cm) 60 30 100 60 30 100
ANET Minimum depth for extraction of

evaporation (cm)
15 5 25 15 5 25

ASM Reference moisture for degradation
(%vol)

0.277 0.208 0.347 0.349 0.262 0.436

BD Bulk density (g cm−3) 1.35 1.21 1.48 1.39 1.25 1.53
CINT Maximum interception storage (cm) 0.15 0.10 0.30 0.15 0.10 0.30
COVM Maximum areal coverage of canopy (%) 90 80 100 90 80 100
EM Emmissivity (−) 0.96 0.94 0.98 0.96 0.94 0.98
FCa Field capacity (%vol) 0.277 0.208 0.347 0.349 0.262 0.436
FEXT Foliar extraction coefficient (cm−1) 0.10 0.05 0.15 0.10 0.05 0.15

(continued overleaf )
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Wick soil Hodnet soil

Parameter Description
Nominal

value
Minimum

value
Maximum

value
Nominal

value
Minimum

value
Maximum

value

HTMA Maximum canopy height (cm) 55 45 65 55 45 65
MEXP Moisture exponent for degradation (−) 0.70 0.42 0.98 0.70 0.42 0.98
QTEN QTEN (−) 2.20 1.82 2.72 2.20 1.82 2.72
T Average monthly temperature at

bottom boundary ( ◦C)
8 6 10 8 6 10

TINI Initial temperature of the horizon ( ◦C) 8 6 10 8 6 10
UPTK Plant uptake factor (−) 0.5 0 1 0.5 0 1
WPa Wilting point (%vol) 0.105 0.079 0.132 0.168 0.126 0.210

Parameterisation specific to Pesticide 1
DEGa Degradation rate (day−1) 0.0893 0.0446 0.1786 0.0893 0.0446 0.1786
KDa Freundlich coefficient (ml g−1) 0.340 0.170 0.680 0.230 0.115 0.460
NF Freundlich exponent (−) 0.90 0.72 1.08 0.90 0.72 1.08
PLDK Pesticide decay rate on canopy (day−1) 0.0893 0.0446 0.1786 0.0893 0.0446 0.1786

Parameterisation specific to Pesticide 2
DEG Degradation rate (day−1) 0.0298 0.0149 0.0596 0.0298 0.0149 0.0596
KD Freundlich coefficient (ml g−1) 1.700 0.850 3.400 1.150 0.575 2.300
NF Freundlich exponent (−) 0.90 0.72 1.08 0.90 0.72 1.08
PLDK Pesticide decay rate on canopy (day−1) 0.0298 0.0149 0.0596 0.0298 0.0149 0.0596

a Primary parameter to which slave parameters were linked.

APPENDIX 3
PESTLA input parameters considered in the sensitivity analysis and variation ranges applied

Wick soil Hodnet soil

Parameter Description
Nominal

value
Minimum

value
Maximum

value
Nominal

value
Minimum

value
Maximum

value

Parameterisation common to Pesticides 1 and 2
BDa Bulk density (g cm−3) 1.35 1.21 1.48 1.39 1.25 1.53
CFLI Coefficient describing the

relationship between the
conversion rate and the volume
fraction of liquid (−)

0.70 0.42 0.98 0.70 0.42 0.98

CFTB Crop factor (−) 0.75 0.50 1.0 0.75 0.50 1.0
CFUP Coefficient of uptake by plants (−) 0.5 0.0 1.0 0.5 0.0 1.0
COFR Soil evaporation coefficient of Black

(cm day−1/2) and Boesten or
Boesten/Stroosnijder (cm1/2)

0.63 0.58 0.71 0.63 0.58 0.71

EGCV Molar activation energy of
degradation (J mol−1)

55 000 41 250 68 750 55 000 41 250 68 750

ENSL Molar enthalpy of the dissolution
process (J mol−1)

40 000 20 000 80 000 40 000 20 000 80 000

G1a Residual moisture content (−) 0.105 0.094 0.115 0.0012 0.0011 0.0013
G2a Saturated moisture content (−) 0.460 0.414 0.506 0.448 0.403 0.492
G3a Saturated hydraulic conductivity

(cm day−1)
288 72 1152 98.1 24.5 392.5

G4a Alpha main drying curve (cm−1) 0.0728 0.0692 0.0764 0.0526 0.0500 0.0552
G6a Parameter n (−) 1.45 1.38 1.52 1.14 1.08 1.20
GCTB Maximum leaf area index (−) 6.2 5.2 7.2 6.2 5.2 7.2
HI Initial pressure heads (cm) −50 −71 −37 −50 −141 −13.5
IF1 Extinction coefficient for diffuse

visible light (−)
0.6 0.3 1.2 0.6 0.3 1.2
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Continued

Wick soil Hodnet soil

Parameter Description
Nominal

value
Minimum

value
Maximum

value
Nominal

value
Minimum

value
Maximum

value

IR1 Extinction coefficient for direct
visible light (−)

0.750 0.375 1.5 0.750 0.375 1.5

LEDS Lengths of dispersion in liquid
phase (m)

0.05 0.002 0.10 0.05 0.002 0.10

ORGa Organic matter content (−) 0.029 0.025 0.032 0.020 0.017 0.022
PSAa Sand content (%) 0.57 0.51 0.63 0.33 0.30 0.36
RDD Root density distribution (−) 1.0 0.75 1.0 1.0 0.75 1.0
RDS Maximum rooting depth allowed by

soil profile (cm)
80 60 100 80 60 100

RDTB Maximum rooting depth (cm) 80 60 100 80 60 100
RSIG Minimum rainfall to reset models

(cm day−1)
0.50 0.25 0.75 0.50 0.25 0.75

SUWA Coefficient of diffusion in water
(m2 day−1)

3.97 × 10−5 8.61 × 10−6 8.63 × 10−5 3.97 × 10−5 8.61 × 10−6 8.63 × 10−5

TEMI Initial soil temperatures ( ◦C) 8 6 10 8 6 10

Parameterisation specific to Pesticide 1
NF Freundlich exponent (−) 0.90 0.72 1.08 0.90 0.72 1.08
HL Half-life (days) 7.76 3.88 15.52 7.76 3.88 15.52
KOM Kom (ml g−1) 11.6 5.8 23.3 11.6 5.8 23.3

Parameterisation specific to Pesticide 2
NF Freundlich exponent (−) 0.90 0.72 1.08 0.90 0.72 1.08
HL Half-life (days) 23.3 11.6 46.5 23.3 11.6 46.5
KOM Kom (ml g−1) 58.1 29.1 116.3 58.1 29.1 116.3

a Primary parameter to which slave parameters were linked.

APPENDIX 4
MACRO input parameters considered in the sensitivity analysis and variation ranges applied

Wick soil Hodnet soil

Parameter Description
Nominal

value
Minimum

value
Maximum

value
Nominal

value
Minimum

value
Maximum

value

Parameterisation common to Pesticides 1 and 2
ANNAMP Temperature annual amplitude ( ◦C) 8 6 10 8 6 10
ANNTAV Average annual temperature ( ◦C) 8 6 10 8 6 10
ASCALEa Effective diffusion pathlength (mm) 20 10 40 20 10 40
BETA Root adaptability factor (−) 0.2 0.1 0.4 0.2 0.1 0.4
CANCAP Canopy Interception Capacity (mm) 2 1 4 2 1 4
CFORM Form factor (−) 1.7 1.3 2 1.7 1.3 2
CRITAIR Critical soil air content for root water uptake (%) 5 2 8 5 2 8
CTENa Boundary soil water tension (%) 10 5 20 18 9 36
DFORM Form factor (−) 0.7 0.5 0.8 0.7 0.5 0.8
DIFF Diffusion coefficient in water (m2 s−1) 4.6E-10 1E-10 1E-09 4.6E-10 1E-10 1E-09
DV Dispersivity (cm) 1 0.2 5 1 0.2 5
EXPB Exponent moisture relation (−) 0.70 0.42 0.98 0.70 0.42 0.98
FEXT Canopy wash-off coefficient (mm−1) 0.01 0.005 0.02 0.01 0.005 0.02
FRACMAC Fraction sorption sites in macropores (−) 0.02 0.005 0.1 0.02 0.005 0.1
FREUND Freundlich exponent (−) 0.9 0.72 1.08 0.9 0.72 1.08
GAMMAa Bulk density (g cm−3) 1.35 1.21 1.48 1.39 1.25 1.52
KSATMINa Saturated hydraulic conductivity (mm h−1) 120 30 480 39.2 19.6 78.5
KSMa Boundary hydraulic conductivity (mm h−1) 0.492 0.246 0.738 0.088 0.044 0.132
LAIHAR Leaf Area Index at harvest (−) 1 0.5 2 1 0.5 2
LAIMAX Maximum Leaf Area Index (−) 6.2 5.2 7.2 6.2 5.2 7.2

(continued overleaf )
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Wick soil Hodnet soil

Parameter Description
Nominal

value
Minimum

value
Maximum

value
Nominal

value
Minimum

value
Maximum

value

LAIMIN Leaf Area Index at zdatemin (−) 1 0.5 2 1 0.5 2
RINTEN Rainfall intensity (mm h−1) 2 1 4 2 1 4
ROOTINIT Root depth at zdatemin (m) 0.2 0.1 0.4 0.2 0.1 0.4
ROOTMAX Maximum root depth (m) 0.8 0.6 1 0.8 0.6 1
RPIN Root distribution (%) 70 60 80 70 60 80
TEMPINIa Initial soil temperature ( ◦C) 8 6 10 8 6 10
THETAINIa Initial soil moisture (%) 27.75 20.81 34.69 27.75 20.81 34.69
TPORVa Saturated water content (%) 46.56 41.90 51.22 46.80 42.12 51.48
TRESP Exponent temperature response (K−1) 0.08 0.06 0.1 0.08 0.06 0.1
WATEN Critical water tension for root water uptake (m) 5 1 20 5 1 20
WILTa Wilting point (%) 10.54 9.486 11.594 16.80 15.12 18.48
XMPORa Boundary soil water content (%) 35.71 32.14 39.28 38.74 34.87 42.61
ZALP Correction factor for wet canopy evaporation (−) 1 1 1.3 1 1 1.3
ZFINT Fraction of irrigation intercepted by canopy (−) 0.1 0.05 0.2 0.1 0.05 0.2
ZHMIN Crop height at zdatemin (m) 0.15 0.1 0.2 0.15 0.1 0.2
ZLAMBa Pore size distribution index (−) 0.163 0.082 0.326 0.084 0.042 0.168
ZMa Tortuosity factor micropores (−) 0.5 0.25 1 0.5 0.25 1
ZMIX Mixing depth (mm) 1 0.25 20 1 0.25 20
ZNa Pore size distribution factor for macropores (−) 4.40 3.96 4.84 4.92 3.35 6.49

Parameterisation specific to Pesticide 1
CANDEG Canopy degradation rate (day−1) 0.0893 0.0446 0.1786 0.0893 0.0446 0.1786
DEGa Degradation rates (day−1) 0.0893 0.0447 0.1786 0.0893 0.0447 0.1786
ZKDa Sorption coefficient (cm3 g−1) 0.340 0.170 0.680 0.230 0.115 0.460

Parameterisation specific to Pesticide 2
CANDEG Canopy degradation rate (day−1) 0.0298 0.0149 0.0596 0.0298 0.0149 0.0596
DEGa Degradation rates (day−1) 0.0298 0.0149 0.0596 0.0298 0.0149 0.0596
ZKDa Sorption coefficient (cm3 g−1) 1.700 0.850 3.400 1.150 0.575 2.300

a Primary parameter to which slave parameters were linked.
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