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Abstract—Sensitivity and uncertainty analyses based on Monte Carlo sampling were undertaken for various numbers of runs of
the pesticide leaching model (PELMO). Analyses were repeated 10 times with different seed numbers. The ranking of PELMO
input parameters according to their influence on predictions for leaching was stable for the most influential parameters. For less
influential parameters, the sensitivity ranking was severely influenced by the seed number used. For uncertainty analyses, probabilities
of exceeding a particular concentration were significantly influenced by the seed number used in the random sampling of values
for the two parameters considered, even for those cases in which 5,000 model runs were undertaken (coefficient of variation of 10
replicated analyses, 5%). A decrease in the variability of exceedance probabilities could be achieved by further increasing the
number of model runs. However, this may prove to be impractical when complex deterministic models with a relatively long running
time are used. Attention should be paid to replicability aspects by modelers when devising their approach to assessing the uncertainty
associated with the modeling and by decision makers when examining the results of probabilistic approaches.
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INTRODUCTION

Modeling techniques based on Monte Carlo (MC) sam-
pling are increasingly used in environmental disciplines [1].
The two main applications are typically the study of the re-
lationship between model input and output (sensitivity anal-
ysis [2]) and the assessment of the variability/uncertainty in
modeling predictions resulting from the variability/uncer-
tainty in model input parameters (uncertainty analysis, also
referred to as MC modeling [3]). An MC uncertainty analysis
for a given model typically involves six stages: The selection
of outputs of interest on which the analysis will be performed;
the selection of model input parameters, the associated un-
certainties of which will be considered; the attribution of
ranges and distributions to each parameter selected and spec-
ification of their dependence/correlation; the generation of
random samples from the joint distributions assigned to pa-
rameters; the running of the model for each of the sample
elements; and the examination of model predictions in sta-
tistical terms (e.g., estimation of the mean and variance, con-
struction of cumulative distribution charts). In a sensitivity
analysis, the sixth step consists of examining changes in mod-
el predictions resulting from changes in model input param-
eters using scatterplots, regression analysis, or correlation
measures [4]. Monte Carlo sensitivity and uncertainty anal-
yses have been reported for pesticide leaching models [5–9].

Reasons for the widespread adoption of MC techniques
in the study of model sensitivity and uncertainty in modeling
include the following: They are transparent, conceptually
simple, easy to explain, and can therefore be readily under-
stood by decision makers; they are generic and can be applied
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to virtually any model (although this might involve a sig-
nificant amount of work for models not amenable to an easy
automation of modeling tasks); they have been applied on
numerous occasions in the past; they are relatively easy to
implement when using appropriate software; and they nor-
mally do not require modifications to the model code. Various
sampling procedures are used in MC studies, and these in-
clude random sampling, stratified sampling, and quasirandom
sampling [4]. Although sampling schemes are termed ran-
dom, the numerical processes involved are deterministic and,
therefore, are not random in the strictest sense. Random num-
ber generation typically requires the specification of a seed
number that will be used to initiate the random sequence.
Different seed numbers will result in different random sam-
ples. Although MC simulation is widely used in many fields
of science, little research has been conducted on what influ-
ence the generation of a random sample with a particular
seed number may have on the overall outcome of MC mod-
eling (replicability issue).

The present paper reports on investigations to assess the
robustness of MC applications in pesticide fate modeling
(MC-based sensitivity and uncertainty analyses) and, hence,
the confidence that should be attributed to results obtained
through these techniques. The research looked at the influ-
ence on results of sensitivity and uncertainty analyses of
the seed number used to generate random values for model
input parameters and the size of the random sample (equiv-
alent to the number of model runs undertaken). Sensitivity
and uncertainty analyses were undertaken for the pesticide
leaching model (PELMO; Staatliche Lehr- und Forschun-
ganstalt für Landwirtschaft, Weinbau und Gartenbau, Neus-
tadt, Germany) with varying numbers of model runs, and
all analyses were repeated 10 times with different seed num-
bers.
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Table 1. Model input parameters included in the sensitivity analysis and parameterization of probability density functions

Parametera Description
Nominal

value
Lower
valueb

Upper
valueb Distribution Variance

ANET
CINT
AMXD
COVM
BUDc

WCc

SA1
CL1

Depth of evapotranspiration computation (cm)
Maximum interception storage (cm)
Maximum active rooting depth (cm)
Maximum soil cover by the crop (%)
Bulk density (g/cm3)
Initial soil water content (%)
Sand content, first horizon (%)
Clay content, first horizon (%)

10
0.28

110
100

1.5
0.2

68.3
7.2

5
0.21

82.5
80

1.35
0.15

64.9
6.8

15
0.35

137.5
100

1.65
0.25

71.7
7.6

Normal
Normal
Normal
Uniform
Normal
Normal
Normal
Normal

6.51
1.28 3 1023

1.97 3 102

—
5.86 3 1023

6.51 3 1024

3.04
3.37 3 1022

OCc

SA2
CL2
SA3
CL3
APPL
DT50
TEMP

Organic carbon (%)
Sand content, second horizon (%)
Clay content, second horizon (%)
Sand content, third horizon (%)
Clay content, third horizon (%)
Application rate (kg/ha)
Laboratory half-life (d)
Temperature of laboratory incubation (8C)

1.5
67

6.7
96.2

0.9
0.015

58.5
20

1.35
63.65

6.365
92.4

0.855
0.01125

29.25
19

1.65
70.35

7.035
100.0d

0.945
0.01875

117
21

Normal
Normal
Normal
Normal
Normal
Normal
Log normal
Normal

5.86 3 1023

2.92
2.92 3 1022

3.66
5.27 3 1024

3.66 3 1026

3.85 3 102

2.60 3 1021

QTEN Increase in degradation for a temperature increase
of 108C (2)

2.2 1.76 2.64 Normal 5.03 3 1022

MOIS Soil moisture content during incubation experiment
(%)

40 30 50 Normal 2.60 3 101

MEXP Exponent for moisture correction (2) 0.7 0.56 0.84 Normal 5.10 3 1023

KOC Sorption coefficient normalized to organic carbon
(ml/g)

91.45 45.725 182.9 Log normal 9.41 3 102

NF Freundlich exponent (2) 0.895 0.716 1.074 Normal 8.34 3 1023

a Variations of values in the subsoil were linked to that in the topsoil.
b Lower and upper values were assumed to correspond to the 2.5th and 97.5th percentiles of the normal and log-normal distributions.
c Depth-dependent parameter.
d A truncation at 100% was integrated into the sampling to avoid the use of unrealistic values.

MATERIALS AND METHODS

Model selection, scenario simulated, and automation of
modeling tasks

The pesticide leaching model used was PELMO version
3.00 SP2. This is a one-dimensional leaching model that in-
tegrates descriptions of water movement and pesticide transfer
through the soil column [10]. Hydrology is described using a
tipping-bucket approach, whereas solute transport is simulated
using the convection–dispersion equation. Subroutines de-
scribing the fate of reactive solutes include the description of
sorption, degradation, pesticide losses in leaching, runoff, soil
erosion, and volatilization.

The leaching of a pesticide in the German soil Borstel was
simulated using replicated climatic data from Hamburg [10].
The weather dataset used was that known as the Hamburg
normal, which consists of a number of replicated years of
weather data for the year 1978 for Hamburg (annual rainfall,
777 mm). Properties of the pesticide were selected from within
the range of those of registered compounds to give a reasonable
likelihood of leaching to groundwater [11]. A laboratory time
for a 50% decline of the initial amount of pesticide value
(DT50) of 58.5 days (assumed to have been determined at
208C and 40% field capacity) was initially considered in the
modeling. The sorption distribution coefficient normalized to
organic carbon (Koc) and the Freundlich exponent were set to
91.45 ml/g and 0.895, respectively. The pesticide was assumed
to be applied to the soil on May 15 in each of the 20 years
simulated. No guidelines are yet available from pesticide reg-
ulatory authorities regarding an acceptable level of exceedance
of a particular threshold concentration, but it is anticipated that
within the context of probabilistic modeling, the acceptance
level will be less than 5% exceedance. Accordingly, an ap-
plication rate of 15 g active substance/ha was selected to pro-

vide, on average, a probability of just less than 5% that the
annual average concentration in the 20th year simulated ex-
ceeds the European Union threshold for drinking water (0.1
mg/L). Values attributed to the main PELMO parameters are
presented in Table 1. The output variable of interest in the
present exercise was the annual average pesticide concentra-
tion in leachate in the 20th year simulated.

Replicability in MC sensitivity analysis

The aim of the sensitivity analyses was to establish a clas-
sification of PELMO input parameters according to their in-
fluence on PELMO predictions for leaching (i.e., to identify
the parameters to which the model is sensitive or insensitive).
The sensitivity of PELMO was studied using MC sampling
combined with regression analysis. This popular methodology
[2,4] has recently been used to investigate the sensitivity of
the pesticide leaching models MACRO [8] and PRZM [9]. In
the present instance, 21 PELMO input parameters were attri-
buted normal (18 parameters), log-normal (two parameters),
or uniform (one parameter) distributions on the basis of expert
judgement (Table 1). For the normal and log-normal proba-
bility density functions, lower and upper values for variation
were arbitrarily selected (Table 1), and these were assumed to
correspond, respectively, to the 2.5th and 97.5th percentiles
of the distributions. For organic carbon content, bulk density,
and water capacity, only the parameter in the top horizon was
included in the analysis, and values for the parameter in the
deeper horizons were modified by the same variation applied
to the value in the top horizon.

Latin hypercube sampling (LHS) [2,4] was used to sample
values for the 21 parameters from their probability density
functions. The two sampling packages used in the present re-
search were Crystal Ball 2000 (Ver 5.1 [12]) and @RISK (Ver
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4.0.5 [13]), which both implement random LHS. Four different
sample sizes were considered (250, 1,000, 2,500, and 5,000
elements), and for each sample size, 10 different replicated
samples were generated by randomly selecting the seed num-
ber used in the sampling. The maximum number of elements
(5,000) was determined by limitations with regard to com-
putational resources.

The PELMO was run automatically and independently for
each element of each replicated sample, and the annual average
pesticide concentration in leachate in the 20th year simulated
was automatically extracted. The total number of PELMO runs
was 10(250 1 1,000 1 2,500 1 5,000) 5 87,500.

The sensitivity of PELMO to changes in input parameters
was derived by regression analysis with raw (i.e., nonranked)
and rank-transformed data. The rank transformation consisted
in replacing each value for inputs and outputs by their rank
in the sample. For instance, the largest organic carbon content
randomly selected in the sample of size 250 received the rank
1, whereas its smallest value was attributed the rank 250. Rank
transformation is a popular transformation in sensitivity anal-
ysis, which is used to decrease nonlinearity/nonmonotonicity
in highly nonlinear systems [14]. Both raw and ranked data
were analyzed in the same way. Annual average concentrations
in the 20th year simulated and model inputs were standardized
(i.e., the mean of each variable was subtracted from each value,
and the result was divided by the standard deviation of the
variable) and linearly related through multiple linear regression
using the Statistica package (Ver 6.0 [15]) as follows:

21

Y 5 b ·X 1 « (1)O i i
i51

where Y is the standardized concentration, Xi is a standardized
input parameter, bi is the regression coefficient for each Xi,
and « is the regression error.

The sensitivity of PELMO to each input parameter is given
by the coefficient bi for that parameter, which is known as the
standardized regression coefficient (SRC; raw data) and the
standardized ranked regression coefficient (SRRC; rank trans-
formed data) [16]. The SRC or SRRC values (S(R)RC) may
be positive or negative. A positive S(R)RC means that an
increase in the input parameter will generally result in an in-
crease in the output, whereas a decrease in the output will
result for a parameter with a negative S(R)RC. For each rep-
licated sample and for the raw and ranked data, absolute values
of S(R)RC were used to sort the 21 PELMO input parameters
according to their influence on the prediction of the annual
average concentration in the 20th year of simulation. The
SRRC indices have been shown to be one of the most robust
and reliable means of assessing model sensitivity [17].

Replicability in MC uncertainty assessments

The probabilistic modeling undertaken was based on MC
simulations and was restricted to the variation of two param-
eters only: Koc and DT50. The PELMO has been shown pre-
viously to be most sensitive to parameters related to sorption
and degradation [18], and these two parameters play an im-
portant role within environmental risk assessments for pesti-
cides. The number of parameters considered in the MC analysis
was voluntarily limited to two in an effort to keep the modeling
system as simple as possible and to ensure the general validity
of the results obtained. Similar results would have been ob-
tained if a larger number of parameters had been selected.

Data regarding the environmental properties of pesticides

are expected to be limited in most instances when an envi-
ronmental risk assessment is needed and not numerous enough
to support a robust attribution of probability distribution func-
tions to parameters via distribution fitting. In the present case,
log-normal distributions were attributed to Koc and DT50
through expert judgment. The focus of the present study was
on illustrating replicability issues, and no distinction between
the contributions of stochastic variability and incertitude (lack
of knowledge) to the overall uncertainty was made. In our
experience, a common rule of thumb is that Koc and DT50
values obtained through standard laboratory experiments will
vary within approximately a factor of 2 from the median val-
ues, although some consider that a factor of 4 might be more
appropriate. This expert knowledge was reflected in the pa-
rameterization of the log-normal distributions by considering
that 95% of the overall probability for the two parameters was
contained within a range defined by M/2 and M·2, where M
is the value considered in the initial scenario.

The LHS procedure was the same as that used for sensitivity
analyses. Twelve different sample sizes were considered (10,
50, 100, 150, 200, 250, 500, 750, 1,000, 1,500, 2,500, and
5,000 elements), and for each sample size, 10 different samples
were generated by randomly selecting the seed number used
in the sampling. The maximum number of elements (5,000)
was determined by limitations with regard to computational
resources.

The PELMO was run for each element of each replicated
sample, and the annual average pesticide concentration in
leachate in the 20th year simulated was automatically extract-
ed. For each sample, the probability p of exceeding a threshold
concentration of 0.1 mg/L was calculated as follows:

n(C . 0.1 mg/L)
p 5 (2)

N

where n(C . 0.1 mg/L) is the number of model runs within
the sample for which the average annual concentration in the
20th year of simulation (C) exceeded 0.1 mg/L and N is the
total number of model runs carried out in the sample.

The total number of PELMO runs undertaken to investigate
replicability issues in uncertainty analyses was 10(10 1 50 1
100 1 150 1 200 1 250 1 500 1 750 1 1,000 1 1,500 1
2,500 1 5,000) 5 315,200. Adding the number of PELMO
runs for the sensitivity analysis, PELMO was run 402,700
times. Each PELMO run took between 17 to 35 s to complete,
depending on the computer used.

RESULTS

Replicability in sensitivity analysis

Model sensitivity was determined by regression analysis
relating the annual average pesticide concentration in leachate
in the 20th year simulated to model inputs. For those instances
in which regression analyses were carried out on the raw un-
transformed data, relatively small r2 values were obtained (0.31
, r2 , 0.49) (Table 2). The poor quality of the regressions
reflected the inherent nonlinear character of the relationship
between inputs and outputs in pesticide fate models and may
question the validity of the sensitivity results obtained. Ap-
plication of a rank transformation to the input and output data
resulted in a large increase in r2 values (0.95 , r2 , 0.97),
confirming the usefulness of this approach.

Results of replicability investigations are presented in Fig-
ures 1 (raw data) and 2 (ranked-transformed data), which pro-
vide a rapid and effective visual assessment concerning the
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Table 2. Coefficient of determination (r2) obtained by regression
analysis on the raw and rank-transformed data for different number

of model runs

Number
of model
runs

Raw data

Meana SD

Rank-transformed data

Meana SD

250
1,000
2,500
5,000

0.415A
0.360B
0.358B
0.347B

0.040
0.023
0.012
0.009

0.958A
0.955B
0.954B
0.954B

0.005
0.002
0.003
0.002

a Means having the same letter are not different at the 5% probability
level (post-hoc Bonferroni’s test).

Fig. 2. Stability in sensitivity ranking obtained for 10 different seed
numbers and four sample sizes (rank-transformed data). A larger sen-
sitivity rank denotes a greater sensitivity of the model to this param-
eter. Each line joins sensitivity rankings obtained for the 10 different
seed numbers for one particular input parameter. A horizontal line
means that the same sensitivity ranking was obtained for the 10 rep-
licated random samples. Charts A, B, C, and D correspond to 250,
1,000, 2,500, and 5,000 model runs, respectively.

Fig. 1. Stability in sensitivity ranking obtained for 10 different seed
numbers and four sample sizes (untransformed data). A larger sen-
sitivity rank denotes a greater sensitivity of the model to this param-
eter. Each line joins sensitivity rankings obtained for the 10 different
seed numbers for one particular input parameter. A horizontal line
means that the same sensitivity ranking was obtained for the 10 rep-
licated random samples. Charts A, B, C, and D correspond to 250,
1,000, 2,500, and 5,000 model runs, respectively.

Fig. 3. Classification of pesticide leaching model input parameters
according to absolute values of the standard sensitivity index (SRC;
5,000 runs). Intervals for each point represent the 95% confidence
intervals. Parameter names are as described in Table 1.

stability of sensitivity results. The four charts in each of the
two figures present results of sensitivity analyses carried out
for the 10 replicated samples. Each chart corresponds to a
different sample size (i.e., a different number of PELMO runs).
Each of the 21 lines in the charts (one for each parameter)
joins sensitivity rankings obtained for a particular parameter
in the 10 replicated sensitivity analyses. A chart with only
horizontal lines would be obtained if the rankings of param-
eters were the same whatever the seed number used. Charts
reflecting poor replicability will appear to be disorganized.

Figure 1 (raw data) shows that replicability of sensitivity
rankings was fairly poor except for the three most influential
parameters. All charts were relatively disorganized, with only
the top three parameters displaying horizontal lines. Figure 3
presents standardized regression coefficient absolute values for
PELMO input parameters together with their 95% confidence

intervals for the case of 5,000 runs and provides an explanation
for the instability of the various replicates observed for the
less influential parameters. Confidence intervals for the first
three most influential parameters are clearly separated, whereas
those for the remaining 18 parameters overlap. It should be
noted that the strict conditions associated with derivation of
these confidence intervals in terms of residue randomness are
not fulfilled when applying a regression approach to a deter-
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Fig. 4. Classification of pesticide leaching model input parameters
according to absolute values of the standard ranked regression co-
efficient (SRRC) sensitivity index (5,000 runs). Intervals for each
point represent the 95% confidence intervals. Parameter names are as
described in Table 1.

Fig. 5. Variability in the probability of exceeding 0.1 mg/L obtained
when repeating Monte Carlo simulations 10 times with different seed
numbers. The sample size (equivalent to the number of pesticide
leaching model runs undertaken for each of the 10 replicated samples)
was varied from 10 to 5,000. CV 5 coefficient of variation.

ministic model, but the approach provides a tentative form of
guidance as to whether the model output is significantly in-
fluenced by the various model inputs [19,20].

The rank transformation of the data led to an improvement
in the stability of the ranking of PELMO input parameters for
different replicated random samples (Fig. 2). Also, the in-
creased stability obtained through an increase in the number
of model runs was visible. Again, the relative stability of the
most influential parameters for the case of 5,000 runs was
reflected, to some extent, by the absence of overlap of the
confidence intervals for SRRC (Fig. 4). Based on the SRRC
results obtained for 5,000 runs, the 10 input parameters (pa-
rameter names as presented in Table 1) that most influenced
PELMO predictions for pesticide were

NF . DT50 . KOC . MOIS . MEXP . TEMP

ø QTEN ø APPL ø BUD ø OC

Parameters that had the largest influence on PELMO pre-
dictions for leaching were those related to pesticide sorption
and degradation. These sensitivity results are in agreement
with those obtained in other studies investigating one-at-a-time
and MC-based sensitivity analyses for the PELMO model [21].
Evaluation of the sum of squares of S(R)RC indices indicated
that the 10 most influential parameters were expected to ex-
plain 95% of the variance associated with predicted concen-
trations on the ranked data, whereas this figure was 35% when
nonranked data were used. This evaluation constitutes only a
first-step assessment of the variance contribution, because it
only focuses on linear aspects of the input–output relation
(Eqn. 1). A complete analysis of the variance contribution of
the individual parameters would require more dedicated and
computationally intensive approaches [22]. Results for the
ranked data suggest that the inconsistent ranking of the re-
maining parameters could be considered to have little overall
relevance, unless the interest was specifically in the influence
of these remaining parameters.

The present investigations demonstrated that the stability
in the ranking of model input parameters according to their
influence on model predictions is dependent on the ranking of
the parameter itself. For those parameters to which the model

is more sensitive, sensitivity ranking will not be influenced by
the use of different seed numbers in replicated samples. In
contrast, the seed number used in the sampling will severely
affect the ranking of those parameters with a lesser influence
on model predictions. Replicability issues in sensitivity anal-
ysis, which have also been reported by Saltelli and Homma
[23] as well as by Helton et al. [24], will tend to decrease as
the number of model runs increases.

Replicability in MC uncertainty assessments

Monte Carlo modeling exercises were conducted for dif-
ferent numbers of model runs and repeated 10 times for dif-
ferent seed number values used in generation of the LHS.
Variability in the probability that the average annual concen-
tration in the 20th year of simulation will exceed 0.1 mg/L is
presented in Figure 5. The figure presents the minimum, av-
erage, and maximum of the exceedance probabilities as well
as its coefficient of variation (CV) as estimated from the 10
replicated uncertainty analyses. Significant variabilities were
obtained for all sample sizes considered, although it should
be noted that variability estimates may be limited in their
accuracy because of the small size of the random samples.
The largest variabilities were obtained for the smallest sample
sizes, and the CV for the largest number of PELMO runs
considered (5,000 model runs) was 5.2%.

The experimental results can be supported by theoretical
considerations on the asymptotic behavior of confidence in-
tervals of probabilities to exceed a particular concentration.
Estimating a probability of exceedance on the basis of a ran-
dom sample is equivalent to estimating the probability of suc-
cess in a binomial distribution. Using the results of the bi-
nomial test [25], the CV of the nonparametric exceedance prob-
ability estimator (Eqn. 2) can be expressed as follows under
conditions of random sampling and asymptotic behavior

1
2 1!p

CV 5 (3)
ÏN

where p is the (unknown) true exceedance probability and N
is the size of the random sample.

Applying Equation 3 to the results obtained experimentally
(N 5 5,000 runs, p 5 0.0343) yields a CV of 7.5%, which
agrees, to some extent, with the empirical results (estimated
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CVs of 5.2%). Differences between empirical and theoretical
results can be attributed to the facts that the estimations of
CVs are empirical and based on 10 replications only; that
empirical results are based on LHS, whereas calculations of
theoretical figures assume random sampling; and that true ex-
ceedance probabilities are unknown. Iman and Helton [26]
consider that satisfactory results with regard to the coverage
of the range of each parameter for evaluating the uncertainty
in model output can be obtained with LHS if the size of the
sample (N) follows the equation N . 4/3·p, where p being the
number of parameters to be sampled. The results obtained here
suggest that this equation should not be used to infer stability
in results of sensitivity analysis and in estimates of exceedance
probabilities derived by uncertainty analysis. A much larger
sample size will be required for these purposes.

DISCUSSION

Probabilistic modeling based on MC sampling currently
receives much attention in the pesticide fate-modeling com-
munity as a possible means to account for the uncertainty and
variability in model inputs (e.g., ECOFRAM, www.epa.gov/
oppefed1/ecorisk; EUPRA [27]). The MC approaches to un-
certainty estimation have been applied successfully in numer-
ous fields of science [4]. The LHS is traditionally considered
to be a very efficient sampling scheme, but the present research
demonstrates that care should be exercised when minimizing
the number of model runs for estimating exceedance proba-
bilities. Uncertainties in the exceedance probability in excess
of 5% (in terms of CVs) were noted when carrying out rep-
licated uncertainty analyses for 5,000 PELMO runs, whereas
uncertainties of approximately 20% to 30% were obtained
when 500 model runs were carried out. Levels of variability
reported will be of relevance to pesticide registration, espe-
cially if they are close to a threshold level used in decision
making to grant authorization for placement of pesticides on
the market. Although the present study focused on the uncer-
tainty in the probability of exceeding a particular threshold
concentration, the results suggest that similar issues of repli-
cability will be encountered when considering specific per-
centiles in distributions.

Improvement in the robustness of exceedance estimates
could be achieved by increasing the sample size (running mod-
els for a larger number of times), assessing the use of more
efficient sampling schemes (e.g., importance sampling [28]),
and investigating more efficient estimates of exceedance prob-
abilities (e.g., [semi-]parametric methods, extreme value the-
ory [29]). The former solution might be difficult to implement
in practice, because pesticide fate models that integrate a com-
plex description of hydrological and pesticide fate processes,
such as the preferential flow model MACRO [8], typically
require minutes to hours for one year to be simulated. The
achievement of robustness in probabilistic estimates may
therefore be hampered by the computational effort associated
with running complex environmental models. Issues of rep-
licability are expected to be of less importance for situations
in which models are linear and amenable to a large number
of runs and the focus is on estimating nontail probabilities.

CONCLUSIONS

The robustness of MC approaches for assessing model sen-
sitivity and the associated variability/uncertainty in model pre-
dictions were investigated for the pesticide leaching model
PELMO. Replicated analyses for different seed numbers and

for different sample sizes suggest that sensitivity results ob-
tained through LHS in combination with multiple linear re-
gression are only stable for those parameters that most influ-
ence model predictions; that the estimation of exceedance
probabilities from MC modeling is subject to uncertainty,
which may affect subsequent decision making; and that sta-
bility of results can be improved by applying a rank transfor-
mation to model input and output (sensitivity analysis) and by
increasing the size of the random sample (both sensitivity and
uncertainty analyses). Although the present study focused on
a pesticide leaching model, similar replicability issues can be
expected for environmental models that share the same general
characteristics (nonlinearity, large number of sensitive param-
eters, strong levels of model sensitivity, and long running
times).

Further work is required to improve our understanding of
the influence of using replicated random samples on MC pre-
dictions. Attention should be paid to replicability aspects by
modelers when devising their approach to assessing the un-
certainty associated with the modeling and by decision makers
when examining the results of probabilistic approaches. The
magnitude of the uncertainty associated with the use of dif-
ferent seed numbers in the sampling, however, should be
placed in the wider context of the uncertainty associated with
the overall approach to risk assessment.
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