
Pest Management Science Pest Manag Sci 60:859–874 (online: 2004)
DOI: 10.1002/ps.893

Inverse modelling for estimating sorption
and degradation parameters for pesticides
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Abstract: The leaching model PESTRAS was used to estimate sorption and degradation values for
bentazone from three lysimeter datasets using the inverse modelling package PEST. Investigations were
undertaken to assess the influence on calibration results of (1) values attributed to uncertain parameters
not included in the calibration, and (2) starting values supplied to the inverse modelling package.
Automatic calibrations with different realistic values for the Freundlich exponent nf yielded different
combinations of Kom and DT50. Similarly, the supply of different starting values for Kom and DT50

revealed that different combinations of these two parameters equally calibrated PESTRAS for two of
the three lysimeters. Examination of the error surface, ie the forward running of the model for different
combinations of Kom and DT50 values, and the calculation of the goodness-of-fit to the experimental data,
was found useful for identifying those instances where non-uniqueness in the calibration is likely to occur.
Although the derivation of sorption and degradation values through inverse modelling is expected to
offer significant benefits over laboratory determinations, care should be exercised when examining values
derived through this approach. Research is needed to identify data requirements for robust estimation of
sorption and degradation parameters through calibration of pesticide fate models against leaching data.
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1 INTRODUCTION
Mathematical modelling has increasingly been used
in the last two decades to describe and predict the
fate of agrochemicals in the environment, particularly
the transfer of compounds to surface waters and
groundwater. Compared with standard field studies,
the use of pesticide fate models is cost- and time-
effective and does not rely on rainfall and other
environmental factors to yield results of interest.
Furthermore, it offers the possibility of encompassing
the variability of weather conditions through the use
of long-term data series, and offers some extrapolation
capabilities to other climates, soils and cropping
practices. As a result of the numerous benefits of
modelling, a large number of models have been
developed, contrasting in their complexity, parameter
requirements and their intended use. Given the
complex nature of processes involved in the transfer of
pesticides in soil, calibration activities are often at the
heart of any modelling activity in this field.1

Automatic calibration of a model against experimen-
tal data by varying model parameters has been used
extensively in groundwater hydrological modelling,2

soil water physics3 and surface water hydrology,4 and

is referred to as inverse modelling. Universal inverse
modelling packages such as PEST5 or UCODE6 can
be linked to almost any model provided it uses and
produces ASCII files and can be run in batch mode.
The large majority of pesticide leaching models meet
these criteria. The application of inverse modelling
methods to pesticide fate models is expected to have
numerous advantages. Three specific uses can be
anticipated. First, inverse modelling provides a means
to automatically calibrate models against experimen-
tal data, and is therefore a welcome alternative to
time-consuming and subjective trial-and-error meth-
ods that are currently used in the calibration of water
and pesticide components of pesticide leaching mod-
els. Although the tuning of some parameters manually
until the model matches the data in some—often
vague and subjective—sense can be rather success-
ful in applications where the number of parameters
is small, it suffers from a lack of exactness, repro-
ducibility and objectivity.7 Second, inverse modelling
techniques could help determine adequate values for
the most uncertain model input parameters that can-
not be determined routinely through experimentation
or expert judgement.8 The third use, investigated here,
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envisages that inverse modelling may be used to derive
sorption and degradation parameters that are specific
to field conditions.

Sorption and degradation parameters usually have
the largest influence on predictions for leached load or
maximum concentrations in leachate from pesticide
leaching models.9–11 Since sorption and degradation
processes cannot be measured independently in the
field, the parameters required are traditionally deter-
mined in laboratory experiments under controlled con-
ditions. However, there are doubts in some instances
on the use of laboratory values to describe pesti-
cide fate under outdoor conditions.12,13 Innovative
laboratory methods that attempt to reproduce field
conditions more closely have been investigated,14 but
no method has gained widespread acceptance, and
sorption and degradation parameters derived under
controlled laboratory conditions remain the norm. An
alternative which may appear promising is the use of
data collected during field or lysimeter experiments
to determine those parameters. This can be achieved
through calibration of a pesticide leaching model for
sorption and degradation parameters against experi-
mental fate data acquired under outdoor conditions.

An evaluation of the combination of the inverse
modelling package PEST with the leaching model
PESTRAS (PESticide TRansport ASsessment) has
been undertaken. The present paper reports on
the simulation of leaching of bentazone from three
lysimeters, and on the possibility of deriving sorption
and degradation parameters from lysimeter data
through an inverse modelling approach. Issues of
reliability in the derivation of sorption and degradation
parameters were investigated by assessing the influence
on calibration results of (1) values attributed to
uncertain parameters not included in the calibration,
and (2) starting values supplied to the inverse

modelling package. A response surface analysis was
also undertaken to assess the confidence that should
be attributed to calibration results.

2 MATERIALS AND METHODS
2.1 Soils and lysimeter experiments
As part of the regulatory submission for the con-
tact herbicide bentazone, three lysimeter experiments
using sandy loam soils were conducted in Germany fol-
lowing BBA guidelines.15 Selected physico-chemical
and hydrological properties are presented in Table 1
for the three soils used. The lysimeters, which ranged
from 1 to 1.2 m in depth, were cropped and managed
according to good agricultural practice (Table 2). The
surface area was 1 m2. 14C-Bentazone was applied to
all lysimeters as a water-soluble formulation between
the end of March and the beginning of July at applica-
tion rates ranging from 0.9 to 1.35 kg AI ha−1. A single
application (in the first year) was made to lysime-
ters 1 and 3 while bentazone was applied twice to
lysimeter 2 (one application in the first year, one
application in the second year). Lysimeters 1 and 2
had to be irrigated to meet the German BBA guide-
line for lysimeter studies (annual rainfall >800 mm).
Leachate from the lysimeters was sampled at regular
intervals and analysed for total radioactivity by liquid
scintillation counting and for concentrations of the
herbicide by thin layer chromatography and/or GC-
MS. Concentrations presented are those determined
by these latter two methods.

2.2 PESTRAS modelling
The PESTRAS model16 was used in its version 3.1.3
to simulate water and herbicide movement through the
lysimeters using site-specific weather data. PESTRAS

Table 1. Selected physico-chemical properties for the three soils and Van Genuchten parameters used in the modelling

Physico-chemical properties Parameters of the Van Genuchten equation

Depth (cm) Sand (%) Silt (%) Clay (%) OM (%) θs (m3 m−3) θr (m3 m−3) α (m−1) n

Borstel soil
0–30 68.3 24.5 7.2 2.6 0.391 0.030 1.26 1.47

30–57 67.0 26.3 6.7 1.7 0.370 0.029 1.81 1.57
57–73 96.2 2.9 0.9 0.3 0.351 0.015 2.81 1.60
73–90 99.8 0.2 0.0 0.0 0.310 0.015 2.81 1.61
90–110 100.0 0.0 0.0 0.0 0.310 0.015 2.81 1.61

110–120 100.0 0.0 0.0 0.0 0.310 0.015 2.81 1.61

Schifferstadt soil
0–35 75.8 16.5 7.7 1.5 0.430 0.020 2.27 1.55

35–60 76.3 14.0 9.7 0.7 0.360 0.010 2.24 2.17
60–80 87.5 5.2 7.3 0.2 0.360 0.010 2.24 2.17
80–110 90.1 6.3 3.6 0.3 0.360 0.010 2.24 2.17

110–120 90.1 6.3 3.6 0.3 0.360 0.010 2.24 2.17

Landau soil
0–39 54.0 39.0 7.0 2.7 0.430 0.020 2.27 1.55

39–85 47.0 44.0 9.0 0.8 0.460 0.000 0.94 1.44
85–90 92.0 0.0 8.0 0.6 0.360 0.010 2.24 2.17
90–100 92.0 0.0 8.0 0.6 0.360 0.010 2.24 2.17
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Table 2. Selected characteristics of the three lysimeter studies

Lysimeter number Locationa Soil name Croppingb Duration (years) Total water inputc (mm) Sampling points

1 A Borstel Cereals 2 1620 15
2 A Schifferstadt WC–WO 3 2414 19
3 B Landau Vegetables–WC 3 2813 42

a A: Limburgerhof; B: Schmallenberg.
b WC: winter cereals; WO: winter oilseed rape.
c Rainfall + irrigation.

is a one-dimensional multi-layer model that includes
sub-routines on water and solute transport, sorption,
transformation, volatilisation and plant uptake of
solutes. Water and solute transport are based on
the Richards’ and convection–dispersion equations,
respectively. Pesticide degradation is assumed to
follow first-order kinetics and sorption is considered to
be instantaneously at equilibrium and to be described
by a Freundlich isotherm. The PESTRAS model
has been evaluated against data for a sandy soil
at Vredepeel in The Netherlands and showed good
capabilities in predicting the leaching of bromide and
two herbicides in the field when site-specific parameter
values were used.17

For the present exercise, hydrological parameters
required by PESTRAS were obtained by fitting the
van Genuchten equation18 where measured water
release curves were available. Alternatively, data were
obtained from those given for eight textural classes
by Tiktak et al19 using data for the Dutch ‘Winand
Staring soil series’ and the Dutch ‘old soil series’
(Table 1). The soil classes were selected on the basis
of the measured clay, silt and organic matter contents.

PESTRAS does not include an explicit lysimeter
bottom boundary condition. Following suggestions
from the model author, the bottom boundary was set to
‘free drain’ and the parameter α of the van Genuchten
equation was arbitrarily fixed to 100 times the value
estimated for the soils within the bottom 10 cm of the
profile. This bottom thickness was arbitrarily selected.
With these settings, outflow only occurs when the
bottom layer is virtually saturated, and thus reflects
the specific conditions in zero-suction lysimeters.

The crops grown in the three lysimeters are listed
in Table 2. The time-course of leaf area indices for
cereals was taken from Dikau20 and Knisel21 and
adapted to the actual sowing and harvest dates. Leaf
area indices given by Hough22 were used as a basis
for simulating winter oilseed rape and vegetables,
and crop growth stages were used to derive the
interception of the application solution by the crops.
Since some soils were cultivated to ca 20 cm depth
at the end of each vegetation period or shortly
before sowing the subsequent crop, the ploughing
option of PESTRAS was used. This enabled uniform
redistribution of pesticide residues in the plough layer
at the end of each season. Crop parameters that
influence evapotranspiration were calibrated manually
within reasonable limits (‘trial-and-error calibration’)

to achieve a good agreement between measured and
observed volumes of leachate.

Equilibrium sorption in PESTRAS is simulated
using the Freundlich equation:

X = Kf × Ce
nf (1)

where X is the amount of compound sorbed (kg kg−1),
Kf is the Freundlich sorption distribution coefficient
(m3/n kg−1/n), Ce is the concentration of the compound
in solution at equilibrium (kg m−3) and nf is the
Freundlich exponent.

In PESTRAS, Kf is estimated from the Freundlich
sorption distribution coefficient normalised to organic
matter (Kom) using the following equation:

Kf = fom × Kom ∗ Cr
1−nf (2)

where fom is the mass fraction of soil organic matter
(kg kg−1) and Cr is the concentration at which
the equilibrium concentration has been estimated
(reference concentration; kg m−3).

No data specific to the lysimeters on sorption and
degradation of bentazone were available. Sorption
(the sorption distribution coefficient normalised to
organic matter Kom and the Freundlich exponent nf )
and degradation (the time for 50% of the pesticide
to degrade in an incubation experiment as derived
by first-order kinetics, DT50) parameters were set
to median values as calculated from 11 sorption
and 21 degradation experiments (Table 3; Company
data). The half-life used (DT50 = 17.8 days at 20 ◦C)
was larger than the median of 10 field persistence
studies (DT50 = 12.5 days). These median estimates
for Kom and DT50 were used as starting values for
the inverse modelling. Degradation rates in the subsoil

Table 3. Sorption and degradation data for bentazone (unpublished

data)

Sorption Degradation

Kom

(ml g−1) nf

Laboratory
half-life
(days)

Field DT50

(days)

Number of studies 11 11 21 10
Minimum 3.7 0.561 7.1 3.0
Maximum 101.9 1.125 86.6 21.0
Mean 26.1 0.839 25.9 12.9
Median 16.4 0.800 17.8 12.5
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were calculated from those in the topsoil in proportion
to the organic matter content of the various horizons.
Henry’s constant was set to zero, as no significant loss
of bentazone through volatilisation has been reported
previously.

2.3 Inverse modelling
Inverse modelling was carried out using the parameter
estimation package PEST5 which implements a
modified version of the Gauss–Marquardt–Levenberg
non-linear estimation algorithm. PEST controls a
model by communicating with it through its input and
output files, and will adjust selected input parameters
as it runs the model repeatedly until the fit between
selected output from the model and experimental data
is optimised according to the weighted least squares
criterion. The range of variation of parameters can be
specified to avoid the return of unreasonable estimates
by PEST. Since the package dialogues with model
input and output files only, it can be used with virtually
any command-line-driven model without the need for
recoding and thus has wide applicability.

The inverse modelling exercise was limited to the
calibration of Kom and DT50 which are two of the most
sensitive input parameters for the PESTRAS model.16

The Freundlich exponent nf was not included in the
calibrations since Kom and nf can be expected to
compensate for one another in the modelling to some
extent. Variations of Kom and DT50 were restricted
to positive values by allowing the parameters to vary
between 10−10 and 1010. Target experimental values
for model optimisation were bentazone concentrations
in samples taken from each of the three lysimeters.
Lysimeter experiments to investigate the fate of
pesticides provide a number of sampling points during
the year with varying time intervals between them.
Each sample is therefore an integration of pesticide
leached through the soil core during the interval
between two successive sampling occasions. Since
PESTRAS does not offer the possibility of calculating
pesticide concentrations integrated over time periods,
a program was written in Perl23 to compute them.
Output from the Perl program was compared with
experimental data by PEST at each model run to
assess the goodness of fit. All sampling points were
included in the dataset, and concentrations below
the analytical limit of quantification (0.01 µg litre−1)
were set to half that value. Default values related
to termination criteria and calculation of derivatives
supplied by PEST were used. The same weights were
assigned to all observations.

The research on the capability of inverse modelling
to provide robust estimates of Kom and DT50 involved
four phases. In a first step, a unique combination
of starting values was attributed to Kom and DT50

(median value from 11 sorption experiments for Kom,
median value from 21 degradation experiments for
DT50) and these parameters were optimised by inverse
modelling for the three lysimeters. In the second
and third steps, investigations were undertaken on

the influence on optimised parameters of (1) the
attribution of different values to the Freundlich
exponent nf ; and, (2) the use of various combinations
of starting values for Kom and DT50. Finally, a response
surface analysis which involves running PESTRAS in
a forward manner with a range of Kom and DT50 values
was undertaken.

2.4 Influence of nf values on calibration results
Estimates of Kom and nf values used in the initial
calibration exercises (Kom 16.4 ml g−1; nf 0.8) were
taken as the median of 11 values obtained in batch
equilibrium sorption experiments. Here, the influence
of the nf value on calibration results was investigated to
address the uncertainty in the attribution of a value to
this parameter. Calibrations similar to those described
above were conducted for different nf values. These
were varied between 0.56 and 1.12 (the minimum and
maximum values reported in laboratory experiments)
using a 0.01-unit increment. This resulted in 57
calibration exercises for each of the three lysimeters.
At the end of each calibration, optimised values,
correlation between Kom and DT50, the number of
runs to achieve convergence, eigenvalues and the value
for the objective function were stored for later analysis.

2.5 Influence of starting values on calibration
results
A single combination of starting values was used in
the initial calibrations for the three lysimeters (Kom

16.4 ml g−1; DT50 17.8 days). Here, the influence
on calibration results of starting values provided to
the PEST package5 was investigated for the three
datasets selected. Combinations of starting values for
Kom and DT50 were obtained by varying Kom between
2 and 30 ml g−1 and DT50 between 2 and 30 days
using an increment of 2 units for each parameter
and by combining all possible Kom and DT50 values.
This resulted in a total of 225 calibration exercises
for each of the three datasets. For each calibration
performed, the following information was extracted
from the PEST record file: values for Kom and DT50

at the end of the calibration, number of model runs
carried out, reason for ending the calibration, sum of
squared residuals and correlation between Kom and
DT50 within the calibration.

2.6 Response surface analysis
The PESTRAS model was run in a forward manner
(as opposed to the inverse modelling approach) for
multiple combinations of Kom and DT50 values.
Parameter values were varied between 2 and 30 ml g−1

(40 ml g−1 for lysimeter 3) and between 2 and
30 days (40 days for lysimeter 3) for Kom and DT50,
respectively. An increment of one unit was applied to
both parameters and this resulted in a total of 841
combinations (1521 combinations for lysimeter 3) of
Kom and DT50. A model run was performed for each of
these combinations and the sum of squared residuals
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(� statistics) which is used by PEST for assessing the
lack-of-fit was calculated for each run:

� =
n∑

i=1

ω2
i × (Oi − Pi)

2

where Oi is the ith observed concentration, Pi is
the model prediction for the ith concentration, ωi

is the weight attributed to the ith observation (here
ωi = 1 for all observations) and n is the number of
observations.

The lack- (�) and goodness- (�−1) of-fit was anal-
ysed using a three-dimensional (3D) representation
against Kom and DT50 values. As noted by Hopmans
and Šimunek,3 response surface analysis is helpful in
revealing the occurrence of local minima, the pres-
ence of a well-defined global minimum, parameter
sensitivity and correlation. The technique has recently
been used by Roulier and Jarvis8,24 in an effort to
investigate parameter correlation in calibration activ-
ities undertaken with the pesticide leaching model
MACRO.

3 RESULTS
3.1 Water balance trial-and-error calibration
and herbicide leaching prior to automatic
calibration of Kom and DT50

Figure 1 presents a comparison of measured cumula-
tive volumes of lysimeter leachates and those simulated
after calibration of PESTRAS by varying crop param-
eters manually in an iterative process. Overall, a good
agreement between observed and simulated water
balances was achieved. Although actual volumes of
water collected from lysimeter 3 were relatively well
matched by the model before day 390 and from day
461 onwards, an over-estimation between these two
dates resulted in a large over-estimation of cumulative
leachate. It was not possible to achieve a better fit by
calibrating crop parameters alone.

Leaching of bentazone for the three lysimeters was
first predicted by PESTRAS using the median val-
ues for Kom, nf and DT50 calculated from laboratory
data. Figure 2 presents the observed concentrations in
leachate and integrated concentrations as calculated
from PESTRAS daily output. Maximum concentra-
tions and cumulative loads over the experimental peri-
ods are presented in Table 4. The observed maximum
concentration and cumulative loads leached through
lysimeter 1 were well represented by the model prior
to calibration of pesticide parameters (Table 4). How-
ever, the simulated timings of first breakthrough and
of peak concentrations did not match those observed
(Fig 2). In addition, the large concentration appearing
at the end of the sampling period was not simulated by
the model. PESTRAS was not able to predict leaching
of the herbicide through the Schifferstadt soil (lysime-
ter 2) on the basis of the starting Kom and DT50

values used. Large discrepancies were observed for
the lysimeter, although this may be attributed to some
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Figure 1. Comparison between observed cumulative volumes of
leachate and those predicted by PESTRAS after a trial-and-error
calibration. Black dots indicate observed data and the solid lines
represent PESTRAS predictions. Arrows indicate the application
dates. Day 1 is 1 January.

extent to an under-estimation of water fluxes (Fig 1).
The maximum concentration in leachate from lysime-
ter 2 was under-estimated by a factor of 1.6, but
total loads were closely matched (Table 4). Bentazone
leaching through lysimeter 3 was considerably over-
estimated by the model (Table 4), with the predicted
maximum concentration in leachate being 18 times
larger than that observed (Fig 2). It is not clear why
such a large discrepancy was found for this particular
lysimeter.

With the exception of lysimeter 1, the model
was unable to predict the maximum concentrations,
patterns of leaching or cumulative loads of bentazone
using median sorption and degradation values, even
though water balances for the three lysimeters were
calibrated to some extent. The discrepancy between
PESTRAS predictions and leaching data may be
attributed to (1) an inadequate setting of the model
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Figure 2. Comparison between (ž) observed herbicide
concentrations in leachate, (�) those predicted by PESTRAS using
median DT50 and Kom values and (�) those predicted by PESTRAS
after calibration by inverse modelling. Arrows indicate the application
dates. Day 1 is 1 January.

input parameters affecting pesticide transport; (2) the
use of sorption and degradation data which are not
specific to the soils in each lysimeter; and (3) the
possible failure of sub-routines influencing pesticide

transport in PESTRAS (eg water transport, soil
temperature) to describe the fate of the herbicide in
some particular lysimeters.

3.2 Herbicide leaching after calibration of Kom

and DT50

Calibrated parameters obtained by inverse modelling
are reported in Table 5. PEST supplied calibrated
parameters which were different from the starting
values for all three lysimeters. None of the calibrated
values for Kom and DT50 were at the upper (1010) or
lower (10−10) limits of variation which were supplied to
the inverse modelling package, and calibrated values
were considered reasonable. Both parameters were
found to significantly influence model predictions
within the inverse modelling exercise. Calibrated Kom

values ranged from 9.8 to 32.2 ml g−1, whilst DT50

values ranged from 11.0 to 21.7 days. Calibrated
values were markedly different from the starting values
for lysimeters 1 and 3. The results, and the uncertainty
associated with them, are within the range of variation
reported for laboratory experiments for bentazone
(Kom range 4–102 ml g−1, DT50 range 7–87 days;
Table 3). Calibrated values for Kom and, to a lesser
extent, DT50 were significantly larger for the lysimeter
situated in Schmallenberg than for those situated in
Limburgerhof. Differences in status and management
of the lysimeters, such as weather conditions, initial soil
moisture status and cropping, might have contributed
to the observed relationship between calibrated
parameters and experimental location. Although
95% confidence ranges for calibrated values were
relatively small for most lysimeters (Table 5), large
correlations between the two calibrated parameters
were reported in the PEST output file for two of
the three lysimeters (r > 0.98). Parameter correlation
is common in environmental modelling, although
it is often overlooked when manual approaches
to calibration are used.2 Large correlation between
optimised parameters is likely to result in non-
uniqueness of calibration results. Non-uniqueness,
non-identifiability and instability can all contribute
to the ill-defined nature of inverse problems25 and
may result in solutions that are meaningless from a
practical perspective.26 Issues of non-uniqueness are
investigated in detail below.

Concentrations for bentazone predicted using
calibrated Kom and DT50 values are compared with

Table 4. Maximum bentazone concentrations in leachate and cumulative loads predicted by PESTRAS before and after automatic calibration by

inverse modelling

Maximum concentrations (µg litre−1) Cumulative load (mg m−2)

Lysimeter
number Observeda

Simulated prior to
calibration

Simulated after
calibration Observed

Simulated prior to
calibration

Simulated after
calibration

1 0.027 0.030 0.018 0.005 0.005 0.004
2 0.178 0.114 0.124 0.043 0.037 0.040
3 0.084 1.480 0.038 0.038 0.667 0.015

a Maximum concentration in any single leaching event; annual average concentrations were <0.1 µg litre−1.
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Table 5. Initial and calibrated values for Kom and DT50

Lysimeter
Kom (ml g−1) DT50 (days) Sum of squared residuals

number Initial Calibrateda Initial Calibrateda Before calibration After calibration Number of runsb Correlationc

1 16.4 9.8 (7.2–12.0) 17.8 11.0 (8.9–13.2) 1.73 × 10−3 7.80 × 10−4 64 0.988
2 16.4 15.7 (8.4–23.0) 17.8 17.4 (11.2–23.5) 6.74 × 10−2 6.58 × 10−2 18 0.981
3 16.4 32.2 (32.1–32.3) 17.8 21.7 (21.7–21.7) 1.83 × 101 4.44 × 10−2 44 0.328

a 95% confidence limits of calibrated parameters in parentheses.
b Number of PESTRAS runs carried out for each calibration.
c Correlation coefficients between Kom and DT50 as returned by PEST.

observed data in Fig 2 and maximum concentrations
and loads are presented in Table 4. The calibration
did not result in an improvement in the prediction
of the maximum concentration and total load
for lysimeter 1 (Table 4), although the shape of
the breakthrough curve (Fig 2) was improved and
the overall sum of squared residuals was reduced
(Table 5). Calibration gave only a slight improvement
over median Kom and DT50 values for lysimeter
2 (Fig 2), the shape of the breakthrough curve
being mis-matched by the model even with the
calibrated parameters. In contrast, the use of calibrated
parameters generated a much improved fit to
experimental data for lysimeter 3. A number of
reasons can be proposed to explain the discrepancy
between observations and PESTRAS predictions for
lysimeter 2 and the lack of improvement provided by
the use of calibrated parameters. First, this might be
attributed to the inherent variability in the analysis
of pesticide concentrations at low residue levels.
Although analytical determinations were carried out
according to best laboratory practice, laboratory data
are always subject to uncertainty.27 Second, some
processes not included in the PESTRAS model,
such as preferential flow or time-dependent sorption,
might significantly affect the fate of the herbicide,
or the mechanisms implemented into the model
may be inappropriate to predict the time series of
concentrations that were observed in this lysimeter.
Third, other parameters not included in the calibration
exercise, especially those which greatly influence
model predictions, may be vital in describing the
breakthrough curve shown in Fig 2. This might
include the Freundlich exponent, which is one of
the parameters that most influences pesticide losses
in PESTRAS,16 but also parameters related to
dispersion within soil or to the variation of pesticide
degradation with depth. In addition, default values
for the calculation of derivatives and convergence
and termination criteria supplied in PEST may be
inadequate for this particular dataset, resulting in
failure of the inverse modelling package to achieve
convergence.

3.3 Influence of nf values on calibration results
Inverse modelling exercises involving the calibration of
Kom and DT50 were conducted for different nf values.
The number of model runs required to cause PEST

to end calibration ranged between seven and 98. The
latter number was obtained for an nf value of 1.06 for
lysimeter 3. Scenarios where only seven model runs
were necessary to end calibration reflected the lack of
sensitivity of the goodness-of-fit function to variations
in Kom and DT50 applied by PEST. This occurred for
all three lysimeters for small values of nf (ie nf<0.67).
Figures 3 to 5 present calibration results for different
nf values for lysimeters 1, 2 and 3, respectively (only
those final calibrated values which differed from the
starting values supplied to PEST are shown). For
all lysimeter datasets, the use of different nf values
resulted in different combinations of calibrated Kom

and DT50 values, thereby reflecting the significant
sensitivity of PESTRAS to the Freundlich exponent.16

For lysimeter 1 (Fig 3), the use of different nf values
resulted in larger DT50 values being compensated
by smaller Kom values in the calibration (Pearson
r = 0.78, P < 0.01). An increase in nf value resulted
in a decrease in DT50 (P < 0.01) and an increase
in Kom (P < 0.01). The variation of calibrated
Kom values against nf followed a clear exponential
relationship (r2 = 1.00, P < 0.01), reflecting the
mathematics of the Freundlich equation which is used
to describe pesticide sorption in PESTRAS (eqn (1)).
All combinations of Kom and DT50 presented in Fig 3
successfully calibrated the PESTRAS model for the
different nf values used. A decrease in the � function
which represents the lack-of-fit between the model
and the lysimeter data was obtained by lowering the
nf value and calibrating the model against Kom and
DT50. Below an nf value of 0.78, PEST returned
the starting values supplied, reflecting the inability of
the package to calibrate the model for small values
of this parameter. The relative change in the �

function for the calibrations was small (maximum
variation 4.0%) although the variation of nf applied
was significant. This stability was reflected in the
pesticide breakthrough curves being similar for the
different combinations of calibrated Kom and DT50

(Fig 6).
Results for lysimeter 2 (Fig 4) contrasted with those

obtained for lysimeter 1 in that: (1) the correlation
between calibrated Kom and DT50 values for the
different nf values was positive (Pearson r = 0.79,
P < 0.01); (2) the use of larger Freundlich values
resulted in larger calibrated DT50 values (Pearson
r = 0.66, P = 0.06); and (3) smaller values of the

Pest Manag Sci 60:859–874 (online: 2004) 865



IG Dubus et al

9.6

9.8

10.0

10.2

10.4

10.6

10.8

11.0

11.2

0 10 20 30 40 50 60

C
al

ib
ra

te
d 

D
T

50
 (

da
ys

)

9.6

9.8

10.0

10.2

10.4

10.6

10.8

11.0

11.2

C
al

ib
ra

te
d 

D
T

50
 (

da
ys

)

0

10

20

30

40

50

60

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

C
al

ib
ra

te
d 

K
om

 (
m

l g
-1

)

Calibrated Kom (ml g-1)

R2 = 0.61

Freundlich exponent

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

R2 = 0.76

Freundlich exponent

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

Freundlich exponent

R2 = 1.00
F

in
al

 Φ
 a

t t
he

 e
nd

 o
f c

al
ib

ra
tio

n

8.2E-04

8.1E-04

8.0E-04

7.9E-04

7.8E-04

7.7E-04

Figure 3. Calibration results for different values of nf for lysimeter 1.
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Figure 4. Calibration results for different values of nf for lysimeter 2.
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� function (ie improved fit to the simulated data)
were obtained when larger nf values were used. As
for lysimeter 1, an exponential relationship between
calibrated Kom and nf values was found, although
deviations from the curve were more frequent and
larger than for the first dataset. These deviations
may reflect the difficulty encountered by PEST in
finding the minima of the � function for a number of
modelling scenarios corresponding to specific values
of nf . Pesticide breakthrough curves obtained using
the calibrated parameter values were more scattered
than those for lysimeter 1 (Fig 6), although the overall
shape remained similar for all calibrations.

Results for lysimeter 3 provided a third behaviour
with respect to the influence of nf values on calibrated
values for Kom and DT50 (Fig 5). For nf values <0.82
and >0.87, calibrated DT50 values were relatively
constant when nf was varied. Calibrated values
were 21.2–22.3 days and 6.3–6.4 days for nf < 0.82
and nf > 0.87, respectively. The grouping was also
reflected in calibrated values for Kom which were
distributed along two exponential curves when plotted
against nf . The chart plotting the � function against
nf showed that two types of � values were obtained,
depending on the value of nf . These differences were
reflected in different calibrated pesticide breakthrough
curves (Fig 6). In some instances, the calibration
of PESTRAS resulted in the model not simulating
the first increase in concentrations (day 271 to day
461) and over-estimating measured concentrations

from day 450 to day 562. The magnitude of
concentrations from day 694 was somewhat better
simulated, although the model failed to simulate the
low concentrations in leachate collected on day 792
and 850. The associated � values were ca 1.8 × 10−2.
Pesticide breakthrough curves which corresponded to
smaller � values were those which provided a good fit
to the initial increase in concentrations in leachate, but
then failed to simulate the presence of the compound
in leachate from day 450 onwards (Fig 6). A range of
intermediate curves between the two broad groupings
described above were obtained in a small number of
cases. Occasionally, an increase in nf value by 1 unit
(eg from nf 0.94 to nf 0.95 or from nf 0.95 to nf 0.96)
resulted in calibrated Kom and DT50 values providing
very different pesticide breakthrough curves.

The use of different values for nf resulted in the
derivation of different calibrated values for Kom and
DT50 for all three lysimeters. Different types of
behaviour with regard to calibration were identified
for the three lysimeter datasets used. In some
instances (eg lysimeter 1), Kom and DT50 compensated
for each other and different calibrated Kom –DT50

combinations resulted in similar predictions of
pesticide breakthrough. In contrast, lysimeter 3
demonstrated that variations in nf values may result
in calibrated Kom –DT50 combinations which lead to
different pesticide breakthrough curves. The selection
of a range of adequate values for nf for lysimeter
3 may be based on a visual assessment of pesticide
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Figure 6. Pesticide breakthrough simulated after calibration of
PESTRAS for different nf values (plain lines). The measured data are
represented by open circles.

breakthrough curves, although this process is likely to
be subjective. Selecting a value for nf on the basis of
the calibration results for lysimeter 1 is made difficult
by the derivation of similar pesticide breakthrough
curves for different nf values (Fig 6). The examination
of the variation of the overall goodness-of-fit (Fig 3)
provided little help for the selection of an nf value
(and hence a Kom –DT50 combination) since the �

function increased monotonously with increasing nf (a
monotonic decrease was found for lysimeter 2; Fig 4).
Such a selection would have been possible if the �

function had shown a clear minimum within the range
of nf values covered here.

3.4 Influence of starting values on calibration
results
A total of 225 combinations of Kom and DT50 starting
values were supplied to PEST for each of the three
lysimeter datasets and this resulted in a total of 675
automated PESTRAS calibrations and 27 159 model

runs. Calibrated Kom and DT50 values are presented
in Fig 7 and resulting pesticide breakthrough curves
simulated by the model are shown in Fig 8. The
grid nodes in Fig 7 correspond to the 225 initial
combinations of starting values supplied to PEST.

Calibration results were dependent on starting
values for lysimeter 1 (Fig 7). For combinations
of Kom and DT50 starting values falling below the
1:1 line, most calibrations were unsuccessful, and
starting values were returned by PEST at the end
of the calibration. However, two convergence zones
were identified. The first zone corresponds to very
small Kom values with DT50 values in the range
1.3–4.4 days. Most of the Kom values were at the
lower bound of variation which was supplied to
PEST (10−10). These Kom values are clearly not
reasonable. The second convergence zone was fairly
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small in the parameter space, and was defined by the
following values for Kom and DT50: 9.6 < Kom < 10.7
and 10.8 < DT50 < 12. Only five combinations of
calibrated values did not fall into any of these
three categories. Combinations of starting values were
classified on the basis of the calibration results (Fig 9).
The Figure shows that calibration results were likely
to fall into the first convergence zone if starting
values were below the 1:1 line, while combinations
of starting values situated above the 1:1 line resulted
in calibrated values in the second convergence
zone. Calibrations in the second convergence zone
provided very similar pesticide breakthrough curves
(Fig 8). Curves which gave little resemblance to the
experimental data in Fig 8 were those corresponding
to the first convergence zone with small Kom values.

Four types of calibration behaviour were identified
for lysimeter 2 on the basis of the position of the
combination of starting values in the parameter space.
For starting combinations falling below a regression
line between Kom and DT50 (Fig 7), PEST either
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returned starting values or very small values for Kom

and DT50, or failed to provide calibration results
because the gradient of the � function became zero.
As for lysimeter 1, calibration was only successful
for combinations of starting values above a particular
line (Figs 7 and 9), but in this instance, calibrated
values for Kom and DT50 fell onto a curve (Fig 7)
rather than being concentrated in a convergence zone.
Pesticide breakthrough curves corresponding to these
calibrated values varied significantly (Fig 8) although,
numerically, the 117 calibrations falling on this line
provided a very similar fit to the data (� values 0.060
to 0.069; data not shown).

Lysimeter 3 showed a complex behaviour when
compared with the other two datasets. Again,
depending on the combination of starting values
(Fig 7), the following results could be obtained (Fig 9):
failure to calibrate because of an insensitivity of the
� function to Kom and DT50; the return of starting
values; a first convergence zone with small values
of Kom; a second convergence zone regrouping 63
calibrations defined by 5.8 < Kom < 6.2 and 6.3 <

DT50 < 6.5; a third convergence zone regrouping
89 calibrations defined by 32.1 < Kom < 33.1 and
21.6 < DT50 < 22.4; and a convergence curve that
was less well defined than for lysimeter 2. Calibrations
which provided a good fit to the first peak in pesticide
breakthrough were related to the second convergence
zone. Calibrations belonging to the third zone yielded
pesticide breakthrough curves which were closer to the
data from day 650 onwards (Fig 8). The final values
of the � function were 0.180 and 0.048 for the second
and third convergence zones, respectively.

3.5 Response surface analysis
Forward modelling for multiple combinations of Kom

and DT50 was undertaken to try to understand the
difference in calibration behaviour shown by the
three lysimeter datasets in relation to the use of
different starting values for Kom and DT50. For
lysimeters 1 and 2, values of Kom and DT50 were
modified between 2 and 30 ml g−1, and between 2
and 30 days, respectively, using a one-unit increment
step for both parameters. Ranges of variation were
2–40 ml g−1 and 2–40 days for lysimeter 3 because
earlier investigations related to starting values had
suggested a convergence zone for values of Kom >

30 ml g−1 and DT50 > 30 days (data not shown). The
sum of squared residuals between the simulated and
measured concentration data (the � statistics) was
calculated for each run. Figure 10 presents surface
and contour plots of the variation of the reciprocal of
the � statistics for all combinations of Kom and DT50

for all three lysimeters. In the plots, the best fit to the
experimental data is obtained for the smallest values
of � (a lack-of-fit statistic) hence the largest values of
�−1 (a goodness-of-fit statistic) in Fig 10.

Figure 10 for lysimeter 1 shows that, within the
parameter space explored, the goodness-of-fit surface
has two flat regions divided by a ridge. The flat section
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for low Kom values (bottom left corner of Fig 10)
corresponds to those combinations of Kom and DT50

which resulted in a large overestimation of pesticide
concentrations in leachate, while the other flat section
(top right corner of Fig 10) corresponds to those values
of Kom and DT50 which resulted in negligible leaching
predicted by PESTRAS. The �−1 function for these
latter runs thus equalled the sum of the reciprocal
of the squared measured concentrations (�−1 = 371).
The parameter space was divided by a ridge with
steep slopes which reflected the large sensitivity of
�−1 in this region of the parameter space. A peak
clearly identifiable on the contour plot in Fig 10 was
observed for approximately Kom10 ml g−1 and DT50

11 days, which is consistent with the convergence zone
observed for the calibration of lysimeter 1 (Table 5;
Fig 7). No large increase in the �−1 statistics was
observed for very low values of Kom, which confirms
that convergence zone I in Fig 7 is an artefact created
by PEST. This resulted from PEST assigning a value
of 10−10 to calibrated Kom, the value which was
supplied as the minimum bound of variation for Kom.
PEST was unable to calibrate PESTRAS in those
specific instances. When investigating the influence
of starting values on calibration results, a number of
calibrations resulted in PEST returning the starting
values (Fig 7) since the package found that the ‘�
gradient [was] zero’. This lack of sensitivity of �−1

corresponded to flat portions of the error surface in
the top right sections of Fig 10.

Results of PESTRAS runs obtained for lysimeter 2
were similar to those for lysimeter 1 in that two flat
sections were separated by a ridge. However, surface
and contour plots for lysimeter 2 suggest that there
was no clear maximum on this crest. Instead, the
contour plot suggests that very similar �−1 values
could be obtained for a large number of combinations
of Kom and DT50. These results are consistent with
those obtained earlier where multiple combinations
of calibrated values falling on a line were returned
by PEST when different starting values were supplied
(Fig 7).

In common with results for lysimeters 1 and 2, the
Kom –DT50 parameter space was divided into two flat
sections and a ridge for lysimeter 3 (Fig 10). There
was a sharp increase in �−1 around values of Kom

of 6 ml g−1 and DT50 of 7 days corresponding to a
clear convergence zone (Fig 7), but, in contrast to
lysimeter 1, the rest of the �−1 values situated on the
ridge were similar (Fig 10). This can be best observed
on the contour plot. These patterns are consistent
with the existence of convergence zone II in Figs 7
and 9 and the presence of a convergence curve (Fig 7).
As for the other two lysimeters, convergence zone I
(Figs 7 and 9) appears to be an artefact reflecting
the inability of PEST to calibrate PESTRAS for
specific starting values. A local maximum of the �−1

function corresponding to the third convergence zone
(ie 32 < Kom < 34 ml g−1 and 20 < DT50 < 24 days)
could be identified on the ridge although the 3D

positioning of Fig 10 selected for presentation does
not allow the identification of the small increase in the
�−1 values.

4 DISCUSSION
Investigations on the influence of the value attributed
to the Freundlich exponent nf (a parameter not
included in the initial calibrations) revealed that dif-
ferent calibrated Kom –DT50 combinations describing
the experimental data equally well could be obtained
for different nf values. The Kom parameter compen-
sated for changes in the values of nf . Calibration
results could not be used to select an adequate value
for nf from a range of possible values, since the
goodness-of-fit monotonically increased or decreased
with increasing nf values. Adding nf to the list of
parameters to be optimised is not a viable option
since Kom and nf would compensate for one another
within the calibration, and this would lead to an
ill-defined calibration problem. It is therefore sug-
gested that, provided Kom, DT50 and nf are the most
influential parameters on the prediction of pesticide
concentrations:10,11 (1) calibrations against pesticide
leaching in lysimeter experiments are restricted to
the parameters Kom and DT50, keeping in mind that
non-uniqueness issues can be encountered; and (2) a
number of calibrations are carried out for different nf

values. The latter point will help to assess the con-
fidence that should be attributed to Kom and DT50

values derived by inverse modelling.
For the three lysimeters, the calibration behaviour

for Kom and DT50 was dependent on the location
of the Kom –DT50 starting values in the parameter
space. Combinations of starting values falling below
a line in a DT50 versus Kom plot led to a failure
to calibrate (ie return of starting values after a few
runs or setting of Kom to the smallest value as
specified in the possible variation range). A number
of reasons can be put forward to explain the fact
that PEST failed to find the convergence zones
for these starting combinations. First, default values
for derivative calculation and termination settings
provided in PEST were used in the calibration.
These default settings might be inadequate for the
present inverse modelling problem and adjustment
might achieve more consistent results. Second, the
implementation of the Gauss–Levenberg–Marquardt
in PEST might be inadequate for dealing with the
present calibration problem where large portions of
the error surfaces showed little sensitivity to changes in
parameter values. The type of behaviour revealed here
by response surface analysis would provide a challenge
to any algorithm for non-linear estimation, and the
performance of other inverse modelling packages,
such as UCODE,6 SUFI28 or SUSE,29 therefore
needs to be assessed. UCODE and SUSE implement
modified versions of the Gauss–Newton and Simplex
algorithms, respectively, while SUFI is based on a
forward, sequential and iterative approach which can
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be integrated within a Bayesian framework. Third, the
computation of derivatives of all observations with
respect to all adjustable parameters might not be
accurate enough to permit a robust implementation
of the Gauss–Levenberg–Marquardt procedure. The
presence of round-off errors incurred in the calculation
of derivatives is the most common cause of PEST
failure to achieve a robust calibration.5 Accuracy
of the derivatives will be mainly dependent on the
accuracy of the resolution of differential equations
by PESTRAS and on the rounding of PESTRAS
predictions in the model output. Inaccuracies resulting
from these two sources will aggregate. PESTRAS
has been developed for simulation purposes and
is not optimised for inverse modelling applications.
Dedicated model codes and procedures for parameter
estimation may have to be developed to obtain reliable
model derivatives and robust estimates of Koc and
DT50.30

For combinations of starting values other than those
which returned starting values, calibration behaviour
was dependent on the dataset considered. In some
instances, starting combinations led to a more or less
unique set of calibrated parameters, as in lysimeter
1. In other cases, calibration results were not unique
and a range of Kom and DT50 values were returned.
Again, the failure to return a unique combination
of parameters might be attributed to an inadequate
parameterisation of PESTRAS or PEST, the lack of
precision in the calculation of derivatives, but also
to the fact that the pesticide concentration data used
might not enable the derivation of a unique Kom –DT50

combination. A parallel can be drawn with the field
of soil water physics where inverse modelling has
been used to assess soil hydraulic properties from
column experiments.3 The use of water outflow
data alone will lead to non-uniqueness issues in
the calibration, but the integration of additional
data (eg tensiometric measurements) will make the
calibration problem better posed. Limitations resulting
from the use of leaching data alone for estimating
sorption and degradation data for pesticides have
already been expressed by Heistermann et al31 on the
basis that the monitoring of leaching water does not
differentiate between different flow domains. Further
research is required into the identification of the data
requirements for a robust calibration of the water
and pesticide components of leaching models. This
might best be achieved through response surface
analysis32 and optimal experimental design which
enables the identification of data requirements for
a well-posed calibration problem prior to conducting
experiments. In the present study, the presence of
a large number of combinations of Kom and DT50

providing a similar goodness-of-fit to the data implies
that the inverse modelling approach may not be
applicable to all combinations of lysimeter data and
leaching models.

The examination of 3D charts plotting � or �−1

against Kom and DT50 following forward modelling

was useful in explaining the different calibration
behaviours observed earlier. The plotting of the error
surface as a stand-alone activity (ie without recurring
to inverse modelling packages) could be of more
general interest for identifying instances where there
is no clear global minimum of the � function in the
calibration of pesticide leaching models, and hence
where non-uniqueness in optimisation using inverse
modelling packages is likely. Provided the grid extends
over large ranges of Kom and DT50 values and the
grid mesh is fine enough, this approach provides a
way to easily identify whether a convergence zone
exists and its location in the parameter space, thereby
negating the need to resort to inverse modelling
procedures. The approach thus provides a practical
solution to non-uniqueness issues where pesticide
leaching models are used to estimate Kom and DT50

values. It was effective in terms of running time when
compared with the investigation of the influence on
calibration results of using different starting values as
presented earlier in this paper. The main limitations
are that (1) only two parameters can be considered for
an easy visual assessment of the error surface in three
dimensions and (2) the technique should be restricted
to those models with a short running time, ie a few
seconds to a few minutes. Here, response surface
analysis helped to characterise the correlation in the
modelling between the parameters Kom and DT50,
which resulted in calibration non-uniqueness. Poeter
and Hill2 suggest two approaches for dealing with large
correlation between parameters. The first is to collect
and include in the calibration additional data that will
uniquely define all parameter values. Investigations
with regard to data requirements for ensuring a robust
calibration of pesticide leaching models are desirable.
The second option to address correlation issues is to
set one of the parameters to a given value and estimate
the other. This approach cannot be implemented in
the present situation since both Kom and DT50 are
uncertain parameters and one would not have any
confidence in assigning a particular value to either
parameter.

5 CONCLUSIONS
Experimental data collected during field or semi-
field leaching studies can be used to derive sorption
and degradation values through automated calibration
of an appropriate pesticide leaching model. Such
an approach is expected to be of interest for:
(1) simulating pesticide fate in those cases where
soil-specific sorption and degradation data are not
available; (2) identifying instances in which the use
of laboratory values in modelling fails to describe
field behaviour, and to derive alternative values in
those circumstances; and (3) extrapolating results to
other climatic conditions as degradation rates derived
through inverse modelling are corrected for influences
of fluctuations in temperature and moisture and can
be tied to reference conditions.
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The present research demonstrated that sorption
and degradation values derived through calibration
of a model against pesticide leaching data should
be examined with care. Investigations revealed that
calibration results were significantly influenced by
the starting values provided to the inverse modelling
package and by values attributed to an influential
parameter not included in the calibration exercise.
Response surface analysis, the examination of the
error surface between observed and predicted values
through forward modelling, proved a useful tool in
(1) identifying those instances where non-uniqueness
is likely to occur in the calibration; (2) assessing
the overall confidence that should be assigned to
calibration results; and (3) finding optimised values
for parameters without resorting to inverse modelling
procedures. Further research is required into the
identification of the data requirements for a robust
calibration of the water and pesticide components of
leaching models through inverse modelling.

Within the context of pesticide registration, average
or median laboratory values will remain the primary
input at lower tiers of regulatory modelling. Values
derived through inverse modelling should be regarded
as additional information helping to build an overall
picture of how a crop-protection product is likely to
behave once released into the environment.
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