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Abstract—Monte Carlo techniques are increasingly used in pesticide exposure modeling to evaluate the uncertainty in predictions
arising from uncertainty in input parameters and to estimate the confidence that should be assigned to the modeling results. The
approach typically involves running a deterministic model repeatedly for a large number of input values sampled from statistical
distributions. In the present study, six modelers made choices regarding the type and parameterization of distributions assigned to
degradation and sorption data for an example pesticide, the correlation between the parameters, the tool and method used for
sampling, and the number of samples generated. A leaching assessment was carried out using a single model and scenario and all
data for sorption and degradation generated by the six modelers. The distributions of sampled parameters differed between the
modelers, and the agreement with the measured data was variable. Large differences were found between the upper percentiles of
simulated concentrations in leachate. The probability of exceeding 0.1 pg/L ranged from 0 to 35.7%. The present study demonstrated
that subjective choices made in Monte Carlo modeling introduce variability into probabilistic modeling and that the results need

to be interpreted with care.
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INTRODUCTION

Current environmental risk assessments for pesticide reg-
istration in Europe rely on the comparison between a calculated
exposure and an ecotoxicological endpoint (surface water) or
a legal threshold concentration (groundwater). Mathematical
models, including the Pesticide Leaching Model (PELMO)
[1,2], Pesticide Root Zone Model (PRZM) [3], Pesticide Emis-
sion Assessment at Regional and Local Scales (PEARL) [4],
and MACRO (http://www.mv.slu.se/bgf/Macrohtm/macro43b/
TechMacro43.pdf), often are used to calculate exposure con-
centrations. Traditionally, deterministic approaches have been
applied in which a single combination of model input param-
eters is used to calculate a single set of predicted environmental
concentrations. The parameter combination often is selected
to be protective of the actual range of use conditions. Such
deterministic “‘realistic worst-case’ approaches are useful at
the lower tiers of the regulatory assessment process, because
they are relatively quick to deploy and act as a screening step.
However, the likelihood that the predicted risk will occur under
real environmental and usage conditions is not assessed, and
the degree of environmental protection provided by determin-
istic worst-case approaches is not very well quantified. There-
fore, interest has increased concerning the use of probabilistic
techniques in environmental risk assessment for pesticides to
quantify better both the likelihood and the magnitude of the
risk involved, such as the Ecological Committee on Federal
Insecticide, Fungicide, and Rodenticide Act Risk Assessment
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Methods (ECOFRAM), European Workshop on Probabilistic
Risk Assessment for the Environmental Impacts of Plant Pro-
tection Products (EUPRA; http://www.eupra.com/report.pdf),
and European Framework for Probabilistic Risk Assessment
of the Environmental Impacts of Pesticides (EUFRAM).

Uncertainty in exposure modeling arises from various
sources [5], including the spatial and temporal variability in
factors influencing pesticide behavior [6] and the incertitude
associated with the measurement, calculation, or estimation of
input parameters [7]. The most widely used technique to ac-
count for this uncertainty in pesticide fate modeling is the
Monte Carlo approach [8—12], although other techniques also
have been applied [13-16]. The Monte Carlo approach in-
volves running a model iteratively for a large number of dif-
ferent input values or modeling scenarios followed by a sta-
tistical analysis of the model output. The parameter values are
sampled from statistical distributions. A Monte Carlo analysis
allows the user to evaluate the uncertainty in model predictions
arising from uncertainty in the input parameters and to estimate
the confidence that should be assigned to the modeling results.
An end result of such probabilistic assessments often is the
likelihood and frequency of exceeding a threshold environ-
mental concentration [17,18].

Dubus et al. [19] (http://www.silsoe.cranfield.ac.uk/
ecochemistry/publications/papers/pl0548.pdf) investigated the
merits and shortcomings of Monte Carlo modeling for pre-
dicting pesticide exposure from a conceptual, technical, and
registration point of view. Those authors found that the sub-
jective choices made during the implementation of this tech-
nique can influence the outcome of the analysis. These choices
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include the type of statistical distribution attributed to model
parameters, the upper and lower limits of the distribution with-
in which samples are taken (truncation), the specification of
dependencies and/or correlations between parameters, the tool
and method used for sampling, and the number of samples
generated from the distributions. The relative importance of
the various assumptions made by different users to the result
of probabilistic risk assessments depends on the situation at
hand. Previous work has suggested that correlation and trun-
cation may have a significant impact [19] (http://
www.silsoe.cranfield.ac.uk/ecochemistry/publications/papers/
pl0548.pdf), but the possible influence of other subjective
choices should not be overlooked.

The influence of user subjectivity on the results of proba-
bilistic modeling was investigated further in the present study.
User subjectivity refers to the subjective choices that are made
when using an existing model in a probabilistic way. The
influence of subjective assumptions made during the devel-
opment of the model was not evaluated. Six pesticide fate
modelers who were experienced with the implementation of
Monte Carlo approaches in the regulatory context were pro-
vided with data concerning degradation and sorption of me-
tamitron (4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-tria-
zin-5-one) measured in 18 soils [20]. Each modeler was asked
to analyze these data, to assign statistical distributions, and to
sample values from these distributions. A leaching assessment
was then carried out using a harmonized scenario and modeling
protocol (e.g., simulation time, output generated) for each of
the six sets of sampled degradation and sorption data.

No comparison was made between simulated concentra-
tions in leachate and measured data from lysimeter or field
studies. Metamitron was only used as an example compound
to illustrate the implications of user subjectivity in Monte Carlo
sampling. Results from probabilistic assessments that are car-
ried out for regulatory purposes should, however, be verified
wherever possible.

MATERIALS AND METHODS
Ring test

The aim of the present study was to investigate the influence
of user subjectivity on the results of probabilistic modeling of
pesticide fate. The likelihood of an example pesticide (meta-
mitron) leaching through soil was assessed based on the var-
iability in its sorption and degradation properties. Six modelers
participated in the ring test (i.e., a study in which the results
from different, independently working participants who fol-
lowed the same set of instructions are compared). Each par-
ticipant received data concerning degradation and sorption of
metamitron measured in laboratory studies with 18 soils hav-
ing a range of properties [20] (Table 1). The soils were in-
cubated at 20°C and a moisture content equivalent to a tension
of —33 kPa. The authors of the original paper [20] derived
first-order degradation rate constants (k) and Freundlich sorp-
tion coefficients from their experimental results. Degradation
rate constants were converted to 50% disappearance times
(DTS50 values; i.e., the time at which the amount of pesticide
has declined to half its initial level) for the present study as
DT50 = In(2)/k. Sorption coefficients normalized to organic
carbon content (K,.) were calculated from the Freundlich co-
efficients (K;) and organic carbon contents of the soils as K,
= (K;/% organic carbon)-100. Information regarding the
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Table 1. Sorption and degradation data for metamitron provided to
the participants of the ring test®

Kb OC K., k¥ DT50

(L/kg) (%) (Lkg)  (/d) (@

Soil 1 1.5 1.4 107 0.014 49.5
Soil 2 2.1 1.2 175 0.020 34.7
Soil 3 2.4 1.9 126 0.027 25.7
Soil 4 7.6 2.0 380 0.019 36.5
Soil 5 0.77 0.7 110 0.065 10.7
Soil 6 1.0 1.4 71 0.042 16.5
Soil 7 1.3 1.7 76 0.029 239
Soil 8 6.6 2.2 300 0.025 27.7
Soil 9 2.2 1.3 169 0.028 24.8
Soil 10 3.3 1.5 220 0.014 495
Soil 11 1.4 1.2 117 0.017 40.8
Soil 12 2.9 2.4 121 0.034 204
Soil 13 5.0 2.0 250 0.029 239
Soil 14 3.5 1.4 250 0.016 433
Soil 15 4.5 2.2 205 0.017 40.8
Soil 16 7.5 2.2 341 0.024 289
Soil 17 1.5 0.6 250 0.027 25.7
Soil 18 2.2 1.5 147 0.033 21.0
Minimum 0.77 0.6 71 0.0140 10.7
Maximum 7.6 2.4 380 0.0650 49.5
Mean 3.2 1.6 190 0.0267 30.2
Median 2.3 1.5 172 0.0260 26.7
Standard deviation 2.2 0.51 91 0.0122 11.1
Coefficient of variation (%) 69 32 48 46 37

2 K; = Freundlich sorption coefficient; OC = organic carbon content;
K,. = sorption coefficients normalized to organic carbon contents;

k= degradation rate constant; DT50 = 50% disappearance time.
b Values taken from Allen and Walker [20].

Freundlich exponent was not available, and the Forum for the
Co-Ordination of Pesticide Fate Models and Their Use (FO-
CUS) default value of 0.9 was used [21]. The variability in
the laboratory values provided to the modelers originated from
the use of soils with different textures, pH values, organic
carbon contents, and microbial activities [20]. Although the
modelers were not provided with the original paper, no explicit
restrictions were given. One modeler derived relationships be-
tween pesticide and soil properties from the published data
and accounted for these relationships in the sampling of mod-
eling input parameters.

The herbicide metamitron is approved by most European
Member States for use in a range of crops. Sugar beets, one
of the major crops, are treated with this herbicide at rates of
up to 3.5 kg active ingredient/ha. The compound was chosen
for the present study because of the availability of degradation
and sorption data from the open literature, and it was only
used as an example to illustrate the influence of user subjec-
tivity on probabilistic leaching assessments.

Each modeler was asked to analyze these data regarding
sorption and degradation of metamitron, to assign a statistical
distribution to these data, to sample sorption and degradation
data from the distributions, and when necessary, to convert
these data to K, values and degradation rate constants for
direct use as input values for the leaching assessment. No
further instructions were given regarding the assumptions,
methods, or tools to be used in the present study. A leaching
assessment was then carried out for each of the six sets of
input data.

Model selection and scenario simulated

The potential for metamitron to leach to groundwater was
investigated using the same model and scenario for each set
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of input values provided by the modelers. The stand-alone
version of the pesticide fate model PELMO 3.00 Service Pack
2 [1,2] was used to simulate leaching of metamitron to depth.
The PELMO model is a one-dimensional leaching model that
describes water movement through the soil column using a
capacitance approach. Solute transport is simulated using the
convection—dispersion equation. Descriptions of pesticide
sorption and degradation and of pesticide losses via runoff,
soil erosion, and volatilization are included in the model.

The combination of input parameters sampled by the mod-
elers was entered into the PELMO model one by one, and the
model was run deterministically every time. The model reads
input parameters from a file in text format. The SENSAN
(sensitivity analysis) utility provided with the PEST software
(Model Independent Parameter Estimation, Watermark Com-
puting, Corinda, QLD, Australia) was used to automatically
paste the K . values and degradation rate constants provided
by each modeler into the PELMO input file, run the PELMO
model, process the output data, and store the annual average
concentrations in leachate for each of the runs together with
the input parameters. The PELMO model does not run in a
probabilistic way, and all input parameters must be sampled
a priori outside the model. Correlation between the parameters
or truncation also was included a priori in the sampling of the
input values.

Leaching of metamitron was simulated on the basis of a
soil, weather, and crop scenario that is commonly used within
pesticide registration in Europe and is provided with the
PELMO model. The Borstel soil is a sandy loam over sand
(U.S. Department of Agriculture classification) with relatively
low organic carbon contents throughout the profile (1.5, 1.0,
0.2, and 0% at 0-30, 30-60, 60-75, and >75 cm, respec-
tively). Weather data from the standard scenario Hamburg nor-
mal (year 1978; annual rainfall, 777 mm) represent average
weather conditions in northern Germany [1]. These data for
the single year were repeated to give a total simulation period
of 20 years. Metamitron was assumed to be applied to a sugar
beet crop on May 1st in each of the 20 years at a rate of 3
kg/ha. Routines for losses via runoff, erosion, and volatili-
zation were turned off in the model, because the exercise con-
centrated on the simulation of leaching.

The model output of interest was the average annual con-
centration in leachate at a depth of 1 m for the 20th year of
the simulation period. This endpoint is normally compared
with a threshold concentration of 0.1 pg/L within the context
of pesticide registration in Europe. Simulated average annual
concentrations in leachate tend to increase from one year of
the simulation to the next until a plateau concentration is
reached. A relatively long simulation period of 20 years was
selected to ensure that the plateau concentration was reached
by the end of the model run for all combinations of input
parameters. Annual average concentrations in leachate for each
of the 20 years were calculated from the simulated mass of
metamitron in leachate and the volume of leachate.

RESULTS AND DISCUSSION
Data analysis

All modelers analyzed the data regarding metamitron sorp-
tion and degradation for correlations and selected statistical
distributions. Correlation coefficients between degradation rate
constants and K; values (—0.35), degradation rate constants
and K. values (—0.38), DT50 values and K; values (0.20), and
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DT50 values and K. values (0.26) were not significant at the
10% probability level.

Five of the six modelers evaluated the fit of different dis-
tributions and retained either the normal or log-normal distri-
bution. Figure 1 shows histograms of the measured K values,
degradation rate constants, and DT50 values as well as the
fitted distributions. The histograms for K. values and degra-
dation rate constants were skewed to the left, and compared
with a normal distribution, a log-normal distribution gave a
somewhat better fit to these data (Fig. 1). The DT50 values
for metamitron were described only slightly better by a log-
normal distribution.

All modelers made a subjective decision regarding whether
to truncate the distributions (i.e., to exclude values outside a
certain range). Truncation is a means of avoiding the sampling
of extreme values from the tails of the distribution. The mod-
elers truncated the distribution if they considered the extreme
values to be unrealistic.

Sampling of degradation and sorption parameters

Degradation and sorption parameters were sampled from
the selected distributions. Table 2 summarizes the choices
made by the six modelers.

Figure 2 shows cumulative frequency distributions of sam-
pled K values and DT50 values of metamitron (either sampled
directly from a distribution or calculated from sampled deg-
radation rate constants) produced by the six modelers. The
frequency distribution of the measured values is shown for
comparison. Scatter plots of sampled sorption versus degra-
dation data are shown in Figure 3. Details of the methodology
chosen by each modeler are given below.

Based on the lack of a significant correlation between K;
values and degradation rate constants or between K. values
and degradation rate constants, modeler 1 sampled sorption
and degradation parameters of metamitron independently (i.e.,
no correlation was included in the sampling). Normal and log-
normal distributions were fitted to the K, values and the deg-
radation rate constants. In both cases, the log-normal distri-
butions gave a better fit. The log mean and log standard de-
viation of the log-normal distribution of the degradation rate
constants were —3.71 and 0.400, respectively. The log mean
and log standard deviation of the distribution of K. values
were 5.13 and 0.496, respectively. The distributions were not
truncated. Combinations of degradation rate constants and K,
values were then sampled from the log-normal distributions
with the random number generator in Microsoft Excel® 97
(Microsoft, Redmond, WA, USA). Sets of 100, 1,000, and
10,000 values were sampled from each distribution. The co-
efficient of variation of the 5th and 95th percentiles of the
sampled values between 10 consecutive samplings was ap-
proximately 10% for samples of 1,000 values; therefore, 1,000
model runs were considered to be sufficient for a robust leach-
ing assessment. The results are shown in Figures 2 and 3.

Modeler 2 analyzed the correlation between degradation
and sorption data. Because the correlations were weak and not
significant at the level of p <0.1, it was decided not to include
correlation in the sampling. A normal and a log-normal dis-
tribution were then fitted to the K., values and DT50 values
using the Crystal Ball 2000 software (Decisioneering, Denver,
CO, USA). A log-normal distribution was chosen based on the
Anderson-Darling index for both parameters. The log mean
and log standard deviation of the distribution of K, values
were 5.13 and 0.49, respectively. The distribution was trun-
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Fig. 1. Histograms of measured K, values (sorption coefficients nor-
malized to organic carbon content), degradation rate constants, and
50% disappearance times (DT50 values), and fitted normal and log-
normal distributions. The Anderson-Darling (AD) and Kolmogorov-
Smirnov (KS) indices are statistical indices for the goodness of fit.
Smaller values indicate a better fit.
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cated at the 0.5th and 99.5th percentile (corresponding to K,
values of 47.4 and 607.0 L/kg, respectively). These percentiles
were chosen such that the measured values were included in
the sampling interval. The log mean and log standard deviation
of the distribution of DT50 values were 3.34 and 0.40, re-
spectively. The 0.5th and 99.5th percentile cutoff values were
10.1 and 78.9 d, respectively. In total, 5,000 combinations of
K,. values and DT50 values were sampled with the Crystal
Ball software using the Latin Hypercube Sampling method.
This method divides the distribution into intervals of equal
probability and then samples from each interval. The cumu-
lative frequency curves of K. values and DT50 values sampled
by modeler 2 were similar to those obtained by modelers 1
and 3 (Fig. 2).

Modeler 3 sampled 150 degradation rate constants and K.
values from correlated log-normal distributions (r = —0.39)
using a software package for sensitivity and uncertainty anal-
ysis (UNCSAM; National Institute of Public Health and En-
vironmental Protection, Bilthoven, The Netherlands) [22]. The
log-normal distribution was selected based on the Shapiro-
Wilks test for normality of untransformed (test for normal
distribution) and log-transformed (test for log-normal distri-
bution) degradation rate constants and K, values. The param-
eters of the distributions were derived by fitting a normal dis-
tribution to log-transformed data. The mean and standard de-
viation of the distribution of the log-transformed degradation
rate constants were —1.61 and 0.173, respectively. The mean
and standard deviation of the distribution of log(K,.) values
were 2.23 and 0.215, respectively. Modeler 3 truncated the
distributions at the log mean * 2.58 X log standard deviation
(i.e., 1st and 99th percentiles). The cumulative frequency
curves of K., values and DT50 values sampled by modeler 3
were similar to those obtained by modelers 1 and 2 (Fig. 2).
Figure 3 shows the influence of introducing correlation into
the sampling. Combinations of small K, values and long DT50
values were sampled less frequently by modeler 3 than by mod-
elers 1 and 2.

Modeler 4 investigated the fitting of a range of statistical
distributions to K. values and degradation rate constants using
graphical, quantile—quantile, and goodness-of-fit tests. Mod-
eler 4 considered that none of the fits obtained was adequate
from a statistical perspective. The modeler adopted an ap-
proach similar to those used in elicitation. This approach did
not aim to find a distribution that matched the 18 measured
data as closely as possible but, rather, used the more limited
information that is commonly available from regulatory stud-
ies (mean or median K, values and DT50 values). The modeler
assigned a triangular distribution with three parameters to the
degradation rate constants (minimum, 0.008/d; maximum,
0.074/d; likeliest, 0.026/d) and K, values (minimum, 31.3 L/
kg; maximum, 434.2 L/kg; likeliest, 172.0 L/kg). The likeliest
value of the triangular distribution (i.e., the mode) was set to
the median of 18 measurements, because the median often is
assumed to be the most representative statistic for sorption and
degradation data. The minimum of the distribution was se-
lected so that the probability of sampling a value smaller than
the measured minimum was 2.78%. Similarly, the maximum
was set such that the probability of sampling a value larger
than the measured maximum was 2.78%. Thus, the total prob-
ability of sampling a value outside the measured range was
one divided by 18, with 18 being the number of measurements.

Modeler 4 selected this approach of setting the minimum
and maximum values of the triangular distribution according
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> A linear regression was used to calculate DT50 values from K. values and clay content.
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Fig. 2. Cumulative frequency distributions of K. values (sorption
coefficients normalized to organic carbon content; top) and 50% dis-
appearance times (DT50 values; bottom) sampled by the six modelers
(solid lines) and frequency distribution of the measured data (open
circles [20]).

to the inverse of the number of data points available because
it offers the advantage of being adapted to the size of datasets.
If a small number of data points are available, then the prob-
ability of obtaining values outside the range defined by the
minimum and maximum observed is considered to be large.
Conversely, for large datasets, the probability of seeing a value
outside the minimum-maximum values observed is considered
to be small. A total of 5,000 values of each parameter were
sampled using the software @RISK (Palisade, Newfield, NY,
USA). The number of runs was selected on the basis of lit-
erature information reported for previous results acquired with
PELMO [23], given that a detailed study of convergence, such
as that reported by Ballio and Guadagnini (http://www.agu.org/
pubs/crossref/2004/2003WR002876.shtml), was considered to
be outside the scope of the present exercise. The resulting
distributions of sampled values were shifted toward shorter
DT50 values and larger K, values compared with the mea-
surements and with the values sampled by modelers 1, 2, and
3 (Fig. 2). This results from the fact that the likeliest value
was set to the median measured value. In triangular distri-
butions, the median value splits the total area of the triangle
into two equal parts. The likeliest value (or mode) is the tip
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Fig. 3. Scatter plots of K, values (sorption coefficients normalized
to organic carbon content) versus 50% disappearance times (DT50
values) sampled by the six modelers.

of the triangle. The median is larger than the likeliest value
in distributions that are skewed to the left, is identical to the
likeliest value in symmetrical distributions, and is smaller than
the likeliest value in distributions that are skewed to the right.
The likeliest value can be calculated theoretically from the
minimum, maximum, and median of the distribution. Using
the median of the measured K,. values and the minimum and
maximum values chosen by modeler 4, the likeliest value was
calculated to be 93 L/kg, whereas the elicitation approach
adopted by modeler 4 resulted in a K. of 172 L/kg. This caused
the shift toward larger K. values. A significant discrepancy
was found between the distribution of measured degradation
rate constants and the triangular distribution specified by mod-
eler 4, and a larger proportion of larger degradation rate con-
stants (corresponding to shorter DT50 values in Figs. 2 and 3)
was sampled by modeler 4 than by modelers 1, 2, 3, and 6.

In contrast to the other modelers and based on previous
work with clay minerals [24,25], modeler 5 analyzed these
data in the original publication [20] and proposed a relationship
between the DT50 values for metamitron, the K. values, and
the clay content of the soils tested:

DT50 = 3.677 + 0.897Clay + 0.0147K,

where the multiple correlation coefficient (R) is 0.6326. A F
test (e = 0.05, one-sided; df (regression) = 2, df (residual) =
15, n = 18) indicated a statistically significant dependence of
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the DTS0 values on clay content and K. values at p < 0.025
with this model. However, a Student’s ¢ test on the partial
regression coefficients indicated that only the partial regression
coefficient for clay was significantly different from zero (a« =
0.05, one-sided; df = 15, n = 18). The two independent var-
iables (clay content and K, ) were not highly correlated with
each other (72 = 0.0574); thus, the interpretation of the two
above-mentioned partial regression coefficients was consid-
ered to be justified [26]. An analysis of residuals indicated
two distinct groups of data. Regression analyses were carried
out for each of these two groups, and it was concluded that
the regression line using all data gave the best approximation
of DT50 values to extrapolate to small clay contents.

Modeler 5 assumed that the clay content of the Borstel soil
for which the leaching assessment was undertaken was un-
certain (i.e., experimental and natural variability were consid-
ered by allowing the clay content in the Borstel soil to vary
by =3% [i.e., ~42% relative variation]). The modeler sampled
1,000 values for the clay content from a triangular distribution
with a likeliest value of 7%, and a minimum value of 4%, and
a maximum value of 10% using Crystal Ball. Next, 1,000 K,
values were sampled from a truncated log-normal distribution
(mean, 191.8 L/kg; standard deviation, 101.3 L/kg; minimum,
38.3 L/kg; maximum, 418.5 L/kg). The DT50 was then cal-
culated for each run from the sampled clay content and K,
value using the regression equation given above.

The combinations of DT50 values and K. values generated
by modeler 5 were much less scattered compared with those
provided by the other modelers (Figs. 2 and 3). The range of
DT50 values (8.6—-18.5 d) was smaller than the range of the
values sampled by the other modelers and also smaller than
the range of measured DT50 values. It should, however, be
noted that the clay contents of the soils included in the original
study were between 15 and 41% [20]. The clay content of the
Borstel soil (4-10%) is smaller and outside this range. The
DT50 values calculated for the Borstel soil by modeler 5 are,
therefore, extrapolations and cannot be compared directly with
the measured values.

The reason for the relatively small range of sampled values
may be that the unexplained error term in the regression was
ignored. This will exaggerate the strength of the relationship
between DTS50, clay content, and K, value and reduce the
randomness in the sampled DT50 values. An example of how
functional relationships, such as the equation used by modeler
5, can be utilized in probabilistic Monte Carlo leaching as-
sessments for pesticides is given by Lindahl et al. [27]. The
authors accounted for the error terms in the regression equa-
tions used to estimate model parameters as random, normally
distributed variables.

Modeler 6 assumed that sorption and degradation param-
eters of metamitron are independent based on correlation anal-
ysis, and no correlation was included in the sampling. Modeler
6 found that DT50 values and K. values were normally dis-
tributed based on the Shapiro-Wilks test (significance level, p
<0.05). He sampled from normal distributions with a mean
DT50 of 30.2 d (standard deviation, 11.1 d) and a mean K|,
value of 190 L/kg (standard deviation, 91 L/kg). The distri-
butions were not truncated. For each variable set for a given
simulation, 400 values were generated by random sampling
using a spreadsheet-based Monte Carlo approach (Microsoft
Excel 2002; Microsoft). The modeler derived the sample size
from the following equation [28]:
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Fig. 4. Cumulative frequency distributions of simulated maximum
annual average concentrations in leachate at 1-m depth generated from
input data sampled by the modelers (top, full distributions; bottom,
only 90th to 100th percentile shown).

n = 4pq/L?

where n is the sample size, p is the event probability (here,
the probability of chemical leaching), ¢ equals 100 — p, and
L is the accepted error (100 — confidence interval). The num-
ber of samples calculated from this equation is largest when
p = g = 50. For a confidence interval of 95%, the sample
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size was calculated to be 400 iterations. One of the sampled
DT50 values and 10 of the K. values were negative. All 11
combinations in which either the DT50 or the K. value was
negative were excluded from the analysis, and only 389 com-
binations of DT50 values and K, values were used in the
leaching modeling. Figure 1 shows that the normal distribu-
tions selected by modeler 6 fit these data less well compared
to the log-normal distributions chosen by modelers 1, 2, and 3.

Probabilistic leaching assessment

Figure 4 shows cumulative frequency curves for maximum
annual average concentrations of metamitron in leachate at a
1-m depth simulated with PELMO using the six sets of sorption
and degradation input parameters. Selected statistics, percen-
tiles, and probability of exceeding the European regulatory
threshold concentration of 0.1 wg/L are given in Table 3.

Simulated concentrations in leachate and the probability of
exceeding 0.1 wg/L differed considerably between the mod-
elers, and discrepancies between the various cumulative dis-
tribution functions were largest at the upper percentiles (Fig.
4 and Table 3). The effects of assumptions made in Monte
Carlo modeling also were stronger at the upper percentiles in
a study by Dubus et al. [19] (http://www.silsoe.cranfield.ac.uk/
ecochemistry/publications/papers/pl0548.pdf). Simulated con-
centrations based on data provided by modeler 5 were much
smaller than those for the remaining five sets of input data
and did not exceed 0.001 pg/L for any of the 1,000 model
runs. Modeler 5 sampled clay contents of the Borstel soil and
K. values for metamitron and calculated DT50 values for each
run from these two variables using a regression equation de-
rived from the experimental data. Because the error term from
the regression was ignored, the resulting range of DT50 values
(8.6—-18.5 d) was much smaller than that for the remaining sets
of input parameters derived from sampled distributions (Figs.
2 and 3).

Concentrations at the upper percentiles calculated using
these data provided by modeler 4 were smaller than those for
modelers 1, 2, and 6 and also were smaller than those for
modeler 3 except for the upper 2% of values (Fig. 4 and Table
3). This results from the fact that the distributions of param-
eters sampled by modeler 4 were shifted toward shorter DT50
values and larger K. values (Fig. 2).

Modeler 3 was the only participant in the ring test who
included a correlation between the degradation and sorption
parameters. As a result, combinations of small K . values and
long DTS50 values were sampled less frequently by modeler 3
than by modelers 1, 2, and 6 (Fig. 3). The model simulated

Table 3. Percentiles and statistics of the cumulative frequency distributions for simulated maximum annual average concentrations in leachate
at 1-m depth and probabilities of exceeding 0.1 wg/L generated from input data sampled by the modelers

Modeler 1 Modeler 2 Modeler 3 Modeler 4 Modeler 5 Modeler 6

50th Percentile 0.004 0.004 0.003 <0.001 <0.001 0.002
80th Percentile 1.2 0.88 0.39 0.009 <0.001 0.990
90th Percentile 7.0 5.6 2.0 0.25 <0.001 8.4
95th Percentile 22.8 16.5 7.8 1.7 <0.001 48.9
99th Percentile 87.8 57.2 12.7 21.7 <0.001 214.2
Exceedance probability (%)* 35.7 33.2 27.0 12.8 0.0 29.4
Mean 4.2 3.0 0.92 0.83 <0.001 8.6
Standard deviation 16.3 12.2 2.7 6.6 0.004 36.0
Coefficient of variation (%) 390 408 297 803 1080 421

2 Probability that the concentration in leachate exceeds 0.1 pg/L.
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greater potential for the pesticide to leach to depth for these
extreme combinations. Concentrations at the upper percentiles
of the cumulative frequency curve thus were larger when the
parameters were sampled from uncorrelated distributions (Fig.
4 and Table 3). The 50th percentile concentration in leachate
and the probability of exceeding 0.1 pg/L were similar with
or without correlation. The correlation between K . and the
degradation rate coefficient was only significant at p = 0.12
and, therefore, might be justifiably ignored. However, even
weak correlations that are not significant at the confidence
levels normally considered in statistics may have important
effects on leaching model predictions [19] (http://www.
silsoe.cranfield.ac.uk/ecochemistry/publications/papers/
pl0548.pdf), and it is not clear that such correlations should
be ignored. This illustrates one important subjective choice in
probabilistic risk assessments for leaching.

The 95th and 99th percentile concentration in leachate cal-
culated from these data provided by modeler 6 were much
larger than those calculated for the remaining five sets of input
parameters. This results from the parameters being sampled
from untruncated normal distributions that generated a number
of very small K values (Fig. 1). The upper percentiles of the
output distribution were strongly influenced by truncation of
the input distributions.

Modelers 1 and 2 sampled K, values and DT50 values
from almost identical log-normal distributions. This resulted
in very similar combinations of sampled K . and DT50 values.
However, modeler 1 sampled from untruncated distributions,
whereas modeler 2 used the 0.5th and 99.5th percentiles as
cutoff values. A larger number of small K . values in com-
bination with long DT50 values thus were sampled by modeler
1, giving somewhat larger simulated concentrations at the up-
per percentiles (Figs. 3 and 4).

Modeler 3 sampled 150 values from the distributions. The
distributions of the measured K. values and DT50 values were
matched as well by the 150 sampled values as they were by
the much larger number of values sampled by modeler 2
(5,000), as shown in Figure 1. However, simulated concentra-
tions in leachate are determined by a combination of both K,
values and DT50 values. Therefore, whether the number of
combinations may have influenced the outcome of the present
study was investigated. Dubus and Janssen [23] demonstrated
that the predicted risk for pesticide leaching can differ con-
siderably between simulations using different sets of parameter
values sampled repeatedly from the same distribution with the
Latin Hypercube Sampling method, even when 5,000 model
runs were undertaken. The variability decreased with increas-
ing sample sizes. In the present study, modeler 2 sampled 5,000
parameter combinations using the same sampling method as
modeler 3. The probability of exceeding 0.1 wg/L and the 95th
percentile concentration in leachate were calculated from 2,
3,4, ...,5,000 consecutive model runs to evaluate the influ-
ence of sample size on the model outcome. The exceedance
probability changed considerably up to approximately 50 mod-
el runs (Fig. 5). The changes in the exceedance probability
were smaller from this point onward. The 95th percentile con-
centration was almost constant from approximately 450 model
runs.

It is difficult to determine an adequate sample size objec-
tively. Modeler 6 selected the sample size using an equation
based on statistical considerations [28]. This equation can give
an initial estimate. However, the sample size that is required
for a robust assessment also depends on the number of com-

S. Beulke et al.

45 45
40 A r 40
30 A r 30
25 A r25
20 A F 20

r15
r 10

Exceedance probability (%)

— 95th percentile
Exceedance probability || 5

T T T T T O
0 150 300 450 600 750 900

Number of runs

95th percentile (micrograms/L)

Fig. 5. The 95th percentile concentration in leachate and the proba-
bility of exceeding 0.1 pg/L calculated from an increasing number of
consecutive model runs (input data generated by modeler 2).

bined parameters, the modeling scenario, the model output of
interest, and the sampling method. Methodologies for investi-
gating aspects of convergence in modeling have been reported
(http://www.agu.org/pubs/crossref/2004/2003WR002876.
shtml). Modelers 1 and 6 used conventional random sampling,
whereas modelers 2, 3, 4, and 5 used Latin Hypercube Sam-
pling. The latter method divides the distribution into intervals
of equal probability and then samples from each interval. Latin
Hypercube Sampling is more precise than conventional ran-
dom sampling for producing random samples, because the full
range of the distribution is sampled in a more consistent man-
ner. Thus, fewer trials are required with Latin Hypercube Sam-
pling to achieve the same accuracy. In practice, the number
of model runs that can be undertaken often is limited by com-
puting times, and the Latin Hypercube Sampling method can
be advantageous in these cases.

CONCLUSION

The present study investigated the influence of user sub-
jectivity in Monte Carlo sampling on the results of probabilistic
pesticide exposure modeling. Six modelers made subjective
decisions regarding the type of statistical distribution assigned
to degradation and sorption data for an example pesticide, the
upper and lower limits of the distribution within which samples
were taken (truncation), correlation between parameters, the
tool and method used for sampling (random vs Latin Hyper-
cube Sampling), and the number of samples generated. All
modelers had already undertaken Monte Carlo modeling in the
past; therefore, the present results are believed to reflect real-
life applications of the technique. Also, it is believed that the
present results are applicable to a range of pesticides and sce-
narios in addition to the examples tested here.

User subjectivity can significantly influence the results of
probabilistic exposure assessments. Therefore, detailed doc-
umentation and justification of the approach used is important
to ensure the transparency and reproducibility of such assess-
ments. User subjectivity can be reduced by standardizing pro-
tocols for Monte Carlo sampling. However, in the context of
pesticide exposure modeling, no guidance agreed to by all
stakeholders is currently available. This results, in part, from
the fact that generalized, objective criteria for decision making
are difficult to identify. For example, the number of measure-
ments available for uncertain or variable pesticide parameters,

such as K. values and DT50 values, usually is small. Statistical
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tests often are not adequate to evaluate the goodness of fit of
different types of distributions to small samples [29]. There-
fore, the decision regarding the type of distribution and the
parameterization of the distribution assigned to these data
sometimes must be based on visual assessment and expert
judgment, which may lead to significant differences in the
results of probabilistic modeling exercises.

Uncertainties in probabilistic risk assessments because of
user subjectivity and other factors are expected to introduce
uncertainties, particularly at the extreme ends of the curves.
This was confirmed by the present study, in which the effects
of subjective choices made by the different modelers were most
evident for high leaching losses with a low probability of
occurrence. Differences in assigning correlations between pa-
rameters and truncation of the input distributions contributed
to the discrepancies. Both truncation and correlation can be
useful to restrict sampling to realistic parameter combinations,
and they should be introduced when appropriate. The uncer-
tainty in regulatory endpoints derived from probabilistic mod-
eling is significantly smaller for lower percentiles (e.g., the
80th rather than the 90th percentile or larger). It should, how-
ever, be noted that rare occurrences of large concentrations
can be relevant for regulators and other stakeholders. The per-
centile on which the regulatory decision is based depends on
the situation at hand, and agreed-on levels of risk do not exist.

Deterministic exposure assessments for pesticides often are
based on a single combination of model parameters, but the
likelihood of this combination occurring under realistic con-
ditions is not evaluated in such assessments. The level of pro-
tection afforded by deterministic assessments is unknown. In
contrast, probabilistic modeling considers a range of possible
values for uncertain parameters and allows better quantifica-
tion of the magnitude and likelihood of the risk involved.
Therefore, probabilistic modeling often is considered to be of
greater accuracy than deterministic assessments. However, the
present study demonstrates that the subjective assumptions and
choices made in Monte Carlo modeling introduce uncertainty
into probabilistic risk assessments, and the results need to be
interpreted with care.
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