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A refined lack-of-fit statistic to calibrate
pesticide fate models for responsive systems
Bernard T Nolan,a,b∗ Igor G Dubusa,c and Nicolas Surdyka

Abstract

BACKGROUND: Calibration by inverse modelling was performed with the MACRO transport and fate model using long-term
(>10 years) drainflow and isoproturon (IPU) data from western France. Two lack-of-fit (LOF) indices were used to control the
inverse modelling: sum of squares (SS) and an alternative statistic called the vertical-horizontal distance integrator (VHDI),
which is designed to account for offsets in observed and predicted arrival times of peak IPU concentration. With these data, SS
was artificially inflated because it is limited to comparison of predicted and observed IPU concentrations that are concurrent
in time. The LOFs were used along with the index of agreement (d) and the correlation coefficient (r) to ascertain the fit of the
calibrated models.

RESULTS: Predicted arrival times of peak IPU concentration differed somewhat from observed times. All four indices indicated
better model fit for the second of two validation periods when inverse modelling was controlled by VHDI rather than SS (SS =
26.4, d = 0.660, r = 0.606 and VHDI = 1.25). The VHDI statistic was markedly lower compared with the uncalibrated model
(38.0) and SS calibration results (24.5). The final maximum predicted IPU concentration (44.5 µg L−1) for the calibration period
was very similar to the observed value (44 µg L−1).

CONCLUSION: VHDI is seen as an effective alternative to SS for calibration and validation of pesticide fate models applied to
responsive systems. VHDI provided a more realistic assessment of model performance for the transient flows and short-lived
concentrations observed here, and also effectively substituted for the objective function in inverse modelling.
c© 2009 Society of Chemical Industry
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1 INTRODUCTION
Pesticide transport and fate models are routinely used by regula-
tory agencies to assess the effects of agricultural contaminants on
groundwater quality.1 – 3 The models are essential tools because
they permit efficient screening of large numbers of pesticides,
soil types, weather regimes and other factors in a reasonable
timeframe and at relatively low cost.4 Such models have become
increasingly sophisticated in the past two decades, in attempts to
improve prediction accuracy under field conditions. Models such
as MACRO5,6 are capable of simulating complex processes such as
preferential flow in the unsaturated zone. The MACRO model has
been extensively used by researchers and in European registra-
tion to predict pesticide transport through a variety of soil types
to groundwater and to drains.7 – 10 Preferential flow commonly
occurs in field soils and is widely recognised as contributing to
the rapid and significant transport of agricultural contaminants
to depth, including pesticides.11 In particular, macropore flow by-
passes the soil matrix, dramatically reducing the residence time
of water and solutes in the vadose zone. Well-structured or clayey
soils are susceptible to rapid transport of even strongly sorbing
chemicals.12 As models become more complex, however, cali-
bration becomes more difficult. Reliable methods are lacking for
estimating macropore parameters, which are difficult to measure
directly.13 In some cases, macropore parameters have no direct
physical meaning and are lumped to indicate preferential flow
effects.14

Autocalibration by inverse modelling is a potential means of
estimating model parameters that are otherwise difficult to obtain.
Software routines such as PEST15 and UCODE16 provide distinct
advantages over manual, trial-and-error approaches. Model fit is
commonly evaluated with an objective function based on the sum
of squared deviations between predicted and observed values.15

Parameter values are adjusted automatically until the dependent
variables (e.g. water flows, pesticide concentration in leachate)
match observed values to the extent possible. Inverse modelling
is advantageous in that parameters are adjusted simultaneously,
and insensitive and/or highly correlated parameters can readily
be identified.17 A potential disadvantage of automatic calibration
based on typical objective functions is that they do not account
for temporal offsets between predicted values and observed data.
A timing difference of a few hours or days does not imply bad
fit when the modelling period encompasses months or years,18

but can have a major effect on sum-of-squares measures.19 In
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Pest Manag Sci (2009) www.soci.org c© 2009 Society of Chemical Industry



www.soci.org BT Nolan, IG Dubus, N Surdyk

practice it is not uncommon to obtain predicted and observed
‘peak’ concentrations that are similar in magnitude but that occur
on different dates. In such cases, inverse modelling may reject the
parameter combination because the arrival times do not coincide
exactly, even though the peak concentrations may match.14

The present study featured a long-term, high-quality dataset
from an agricultural experimental station in western France.
Drainflow volumes and herbicide concentrations in tile drains
were measured for more than 10 years at the site. The numerous
observations provided a rare opportunity to estimate macropore
flow parameters with a high degree of precision, and partitioning
the long-term dataset permitted validation of calibrated models.
The goal of the present modelling exercise was to improve on a
previous blind calibration of the MACRO model20 by finding an
optimal combination of parameters. To assist in calibration and to
extend the usefulness of the observed data, the authors developed
an alternative lack-of-fit (LOF) statistic that considers the case
where the predicted and observed peak concentrations arrive
at different times. It was anticipated that use of the alternative
statistic in conjunction with inverse modelling would improve
model calibration for responsive systems with well-defined peaks.
The alternative LOF was compared with sum-of-squares and two
goodness-of-fit (GOF) measures, the correlation coefficient and
the index of agreement. Previous researchers had found that
the correlation coefficient was not consistently related to model
accuracy,21 and the index of agreement has been described as
an improvement over the coefficient of determination (R2).22

However, these GOFs have not been simultaneously evaluated in
the context of transient and highly responsive systems. Therefore,
the specific objectives were to compare traditional and alternative
LOF measures by inverse modelling for adjustment of macropore
flow parameters and to evaluate model fit by these and selected
GOF measures for calibration and validation datasets.

2 METHODS
The experimental site is located near La Jaillière, France, and is
operated by Arvalis – Institut du Végétal. The site comprises 5 ha
of land consisting of six drained and two undrained field plots on
which mainly corn and winter wheat are grown. The area has an
oceanic climate typical of western Europe and received an average
of 725 mm of rain per year over the period 1982–1996. Slope at
the site generally varies between 0 and 3%. The present research
focused on a single drained plot (T4) about 1 ha in size.

2.1 Drainage and soil samples
Artificial drains constructed of 50 mm diameter PVC were installed
by Arvalis in field plot T4 at spacings of about 10 m and at depths
of 80–100 cm. Drainflows were routed to a collection chamber for
periodic flow volume measurement and herbicide sampling by
an autosampler. Drainage from the plot was sampled between 1
September 1993 and 28 July 2003 for analysis of isoproturon
[3-(4-isopropylphenyl)-1,1-dimethylurea; IPU], a residual urea
herbicide typically used on cereals for control of annual grasses
and broadleaf weeds. The IPU samples were stored at −18 ◦C
and analysed by liquid chromatography–mass spectrometry at
the GIRPA laboratory in Angers, France (limit of quantitation
0.05 µg L−1).

Soils at the La Jaillière site are medium loamy over clay and are
classified as Stagnic Luvisols.23 A soil pit was excavated in May 2005
at the edge of plot T4 to procure samples for laboratory analysis

Table 1. Measured soil properties used to parameterise the MACRO
model

Texture (%) Bulk Sorption
Horizon Organic density coefficient

depth (cm) Sand Silt Clay matter (%) (g cm−3) ZKD (cm3 g−1)

0–30 34.6 44.6 20.8 2.19 1.53 1.43

30–48 32.8 41.3 25.9 0.79 1.58 0.44

48–65 15.5 35.3 49.2 0.46 1.61 0.25

65–110 21.5 35.8 42.7 0.37 1.63 0.22

and to characterise soil layers, texture, size of peds and their
arrangement, degree of mottling and likely water flow pathways.
The field observations and laboratory data were used for initial
parameterisation of MACRO, the pesticide transport model used
in this study. Soil samples were analysed for sand, silt and clay
percentages, organic matter (OM) content and bulk density at INRA
in Arras, France (Table 1). The MACRO sorption coefficient, ZKD,
was measured for IPU in batch experiments conducted for each
soil horizon (Table 1)20 and then adjusted slightly on the basis of
initial, limited model calibration. The adjusted ZKD values (Table 2)
were the starting values for calibration by inverse modelling and
are referred to as the ‘uncalibrated model’ in Section 3. The ZKD
values correspond to an organic carbon sorption coefficient (Koc)
of 125 cm3 g−1 and reflect the organic carbon content of each
soil layer. To simulate degradation in MACRO, an IPU half-life
(DT50) of 20 days was specified on the basis of field values in the
FOOTPRINT Pesticide Properties Database24 and the results of the
initial, limited calibration. The corresponding degradation rates
(DEG) in Table 2 are expressed on a per-day basis and reflect the
soil water content at the micropore–macropore boundary and
the temperature at which the degradation rates were measured.
Degradation rates for each layer were adjusted for changes in
organic carbon, bulk density and ZKD, as described in a prior
study.25

2.2 MACRO model parameterisation
Version 4.3 of MACRO, a one-dimensional non-steady-state model
of water flow and solute transport,26 was used to simulate drain
flows and IPU concentration in drainage at field plot T4. The
model considers two flow domains consisting of micropores
and macropores so as to simulate preferential flow and solute
transport in a variety of soil types. Unsaturated water flow in
the micropores is simulated by Richards’ equation, and water
retention parameters are calculated using the Brooks and Corey
equation.27 Unsaturated hydraulic conductivity in micropores is
described by Mualem’s model.28 For the macropores, gravity flow
of water is assumed, and hydraulic conductivity is simulated using
a kinematic wave approach. Solute transport is simulated by the
convection–dispersion equation in the micropores and as mass
flow only in the macropores. The division between micropores and
macropores is characterised by the soil water content (XMPOR),
soil water tension (CTEN) and hydraulic conductivity (Kb). At water
contents greater than XMPOR, the hydraulic conductivity of the
macropores increases very rapidly as saturation is approached.

Rainfall was measured at the La Jaillière field site, and irrigation
amounts were obtained from a detailed schedule of operations for
incorporation into the MACRO weather input file. Irrigation inputs
of 20–30 mm each were distributed over a 1 h period at midday.
Minimum and maximum temperatures and Penman estimates of
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Table 2. MACRO model parameters varied during inverse modelling controlled by the internal objective function (sum of squares; SS) or externally
by the vertical-horizontal distance integrator (VHDI). Initial inverse modelling varied all parameters shown, but the objective function failed to stabilise
after 12 iterations

Calibration method
Starting

Parameter Name (uncalib.) value Lower bound Upper bound SSa VHDIa

Pesticide properties

Degradation rate (day−1) layer 1 DEG1 0.0433 0.0177 0.885 0.0433 0.0433

Degradation rate (day−1) layer 2 DEG2 0.0359 0.0159 0.375 0.0359 0.0359

Degradation rate (day−1) layer 3 DEG3 0.0312 0.0153 0.231 0.0312 0.0312

Degradation rate (day−1) layer 4 DEG4 0.0274 0.0139 0.184 0.0274 0.0274

Sorption coefficient (cm3 g−1) layer 1 ZKD1 1.55 0.0620 3.72 1.55 1.55

Sorption coefficient (cm3 g−1) layer 2 ZKD2 0.568 0.0227 1.36 0.568 0.568

Sorption coefficient (cm3 g−1) layer 3 ZKD3 0.335 0.0134 0.804 0.335 0.335

Sorption coefficient (cm3 g−1) layer 4 ZKD4 0.265 0.0106 0.636 0.265 0.265

Macropore properties

Boundary soil water content (% vol.) layer 1 XMPOR1 37.38 16.20 42.87 38.20 35.55

Boundary soil water content (% vol.) layer 2 XMPOR2 39.29 17.06 41.30 38.65 36.60

Boundary soil water content (% vol.) layer 3 XMPOR3 39.81 27.32 40.26 40.24 37.18

Boundary soil water content (% vol.) layer 4 XMPOR4 38.80 24.75 39.54 39.54 38.86

Boundary soil water tension (cm) layer 1 CTEN1 18.00 10.00 50.00 28.94 18.03

Boundary soil water tension (cm) layer 2 CTEN2 20.00 10.00 50.00 15.21 19.43

Boundary soil water tension (cm) layer 3 CTEN3 40.00 10.00 50.00 10.00 40.16

Boundary soil water tension (cm) layer 4 CTEN4 35.00 10.00 50.00 25.31 35.00

a Degradation rate and sorption coefficient were fixed after the initial inverse modelling attempt.

PET were obtained from the weather station at Beaucouzé, France
(latitude = 47◦ 28′ 0′′ N, longitude = 0◦ 37′ 60′′ W), which is
32 km from La Jaillière. Crop growth parameters in MACRO (foliar
indices, crop height, root distribution and depth, foliar senescence)
were specified on the basis of recommendations by the FOCUS
(FOrum for Coordination of pesticide fate models and their USe)
workgroup.29 Dates of IPU application and of planting and harvest
of corn, winter wheat and cover crops were obtained from the
La Jaillière schedule of operations. IPU was applied by spraying
a commercial product at a rate of 200 L ha−1, which resulted in
input concentrations of 2500–6250 g m−3 of active ingredient to
the field plot. These application rates are representative of those
used in France.

For initial parameterisation of MACRO, the authors estimated
XMPOR and CTEN for each soil layer using van Genuchten water
retention curves derived from pedotransfer functions associated
with the HYPRES soil properties database, which contains water
retention data from 2894 soil horizons in Europe.30 The HYPRES
pedotransfer functions used as input for the observed bulk
density values and percentages of clay, silt and organic matter
in Table 1. Starting values of CTEN shown in Table 2 were selected
by expert judgement based on prior experience with MACRO
applied to clayey soils in north-western Europe. The value of
XMPOR equivalent to CTEN was derived from the water retention
curves, and Kb was estimated as described in a prior study.7

2.3 Lack of fit and calibration by inverse modelling
The parameters DEG, ZKD, XMPOR and CTEN are among the most
sensitive parameters in MACRO, according to prior modelling
conducted for fine loamy soils in north-western Europe.31 Model
calibration by inverse modelling was initially attempted for all four
parameters using PEST parameter estimation software.15 However,

the objective function had not stabilised after 12 optimisation
iterations and 404 model calls, indicating that the calibration
problem may have been ill posed. DEG and ZKD were therefore
excluded from inverse modelling, and, instead, response surface
analysis was used to evaluate these two parameters. Running
MACRO for exhaustive combinations of two parameters and
analysing the GOF response surface (�−1) provides an effective
means of identifying whether a unique best-fit combination exists
and shows the best-fit values of the two parameters.4 The GOF
statistic is the inverse of the LOF statistic (�). Additionally, response
surface analysis effectively identifies potential problems such as
correlation between two parameters.17 A total of 224 MACRO
simulations was conducted for DT50 values of 1, 2, 3, 4 and
5–50 days (in increments of 5 days) and for Koc values of 5, 10,
15, 20 and 25–300 cm3 g−1 (in increments of 25 cm3 g−1). The
resulting �−1 values were plotted in three dimensions using
SURFER v.8.03.32

The authors focused on adjustment of XMPOR and CTEN by
inverse modelling for two cases: 1 – using the SS-based objective
function in PEST; 2 – controlling PEST with an alternative LOF statis-
tic described below. In case 1, a typical way of conducting inverse
modelling, PEST computed correlations between parameters and
a composite sensitivity for each. Relative composite sensitivities
were then computed as PEST’s composite sensitivity multiplied
by the magnitude of the parameter and the square root of N (Hill
M, US Geological Survey, private communication, January 2009).
The parameter sensitivities and model residuals are used in inverse
modelling to determine the magnitude and direction of parameter
adjustments required to reduce the objective function.17

To compare model predictions with the field observations by
inverse modelling, a Perl program was written to sum the daily
predictions and compute average IPU concentrations for sampling
periods. Although MACRO provides daily and weekly estimates of
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drainflow and pesticide concentration, the data were collected at
irregular time intervals ranging from 1 to 18 days. The PEST control
file invoked a batch file to run MACRO, open model output files
and process the output using the Perl program. The Perl output
was specified as the model output in the PEST control file. Thus,
the model predictions read by the PEST instruction file for case
1 were the aggregate flows and average IPU concentrations in
the Perl output. The Perl program also calculated the index of
agreement (d) and correlation coefficient (r) between observed
and predicted values, and an alternative LOF statistic for each of
three time periods that were subsets of the overall period of IPU
measurement: period 1 (28 December 1993–30 October 1995),
used for calibration by inverse modelling, and periods 2 and 3 (18
October 1999–10 September 2001 and 17 September 2001–28
July 2003 respectively) which were reserved for model validation.
These latter periods occur late in the overall period of record
and were therefore considered a good test of the extrapolation
capabilities of the calibrated model. Whereas r can indicate positive
or negative relations between two variables, d varies between 0
and 1 and has a meaning similar to R2 (note that R2 = r2). The index
of agreement is the SS of observed and predicted values divided
by the potential error and subtracted from 1. The potential error
is the ‘sum of the squared absolute values of the distances from Pi

to Ō to Oi ’, where Pi and Oi are predictions and observations, and
Ō is the mean of the observations.22

An alternative LOF statistic, called the ‘vertical-horizontal
distance integrator’ (VHDI), was developed for use in case 2
modelling. Case 2 is proposed as an alternative method of model
calibration for responsive systems and is designed to handle
small time offsets such as those observed at La Jaillière. The
VHDI statistic locates the maximum predicted IPU concentration
regardless of when it occurs within a time period and compares
it with the maximum observed concentration in the same period.
Because it considers only the peak concentrations, it is intended
for responsive systems that show significant and rapid response
to water and chemical inputs at the land surface, and short-lived
chemical concentrations. The VHDI is defined as

VHDI =
√(

Cmax pred − Cmax obs
)2 + (

tmax pred − tmax obs
)2

(1)

where Cmax pred is the maximum predicted IPU concentration
(µg L−1), Cmax obs is the maximum observed IPU concentration
(µg L−1), tmax pred is the sampling period during which the
maximum predicted IPU concentration occurs (given as the
day on which the sampling period begins, with days numbered
consecutively from the beginning of the experiment), and tmax obs

is the sampling period during which the maximum observed
IPU concentration occurs. VHDI comprises vertical and horizontal
distance components: Cmax pred − Cmax obs gives the vertical
distance, that is, the difference in maximum IPU concentrations;
and tmax pred − tmax obs represents the horizontal distance, that
is, the difference in peak arrival times. VHDI essentially is a
Pythagorean measure of distance between the observed and
predicted maximum IPU concentrations (Fig. 1). As the vertical
and/or horizontal distances increase, VHDI and model LOF
increase. Although not shown here, the user can supply weights
to reduce the influence of either the vertical or the horizontal
distance. This might be appropriate if, for example, data have high
uncertainty because of sampling and/or measurement errors.

In case 2 modelling, VHDI was calculated outside PEST using the
Perl program and was substituted in the following manner for the
model prediction read by PEST. A value of zero was specified as a

Time

tmaxpred – tmaxobs
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Figure 1. Diagram showing the vertical-horizontal distance integrator
(VHDI) and its two contributing distances. Cmax pred − Cmax obs is the
difference in predicted and observed maximum IPU concentrations, and
tmax pred − tmax obs is the difference in peak arrival times.

single observed data point in the PEST control file for comparison
with VHDI in the Perl output. PEST therefore attempted to drive
VHDI to zero through modification of MACRO input parameters
within specified bounds by inverse modelling. The PEST objective
function in this case was simply the squared value of VHDI, and
correlations for parameters were not computed because there
were fewer observations than parameters being estimated. How-
ever, the approach does yield parameter sensitivities. The reader
may consult the PEST user manual15 for more details on parameter
optimisation and uncertainty analysis by inverse modelling.

3 RESULTS AND DISCUSSION
3.1 Observed conditions and the uncalibrated MACRO model
Observed drainflow and IPU concentration indicated rapid
transport of water and solute to 1 m depth at the La Jaillière
site, which is consistent with macropore flow (Figs 2a and b).
The peak observed IPU concentration generally occurred within
6–15 days of pesticide application, based on the last date of the
sampling period. The fast arrival times agree with prior studies
conducted in clay soils. In undisturbed lysimeter studies in the
UK, maximum IPU concentration (17.2 µg L−1) occurred within
20–40 days after treatment for two of seven clay soil replicates.33

Fast arrival of IPU occurred more frequently in the clay loam (clay
content 24.9–29.3%) than in a sandy loam (7.83–13.4% clay),
suggesting macropore flow. Similarly, the maximum observed
concentration of sulfosulfuron (2.3 µg L−1) occurred within
10 days after treatment in another UK study involving clay
soils (27.6–37.8% clay).8 The fast arrival times underscore the
importance of macropore flow to drains in structured soils with
high clay content. The clay contents of the horizons at plot T4
(20.8–49.2%) encompass the amounts cited above for clay soils.

The uncalibrated MACRO model used parameter values shown
in Table 2. Both the timing and magnitude of predicted drainflows
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Figure 2. Observed versus predicted (a) drainflows and (b) isoproturon (IPU) concentrations obtained without calibration for the total period of record,
and (c) observed and predicted IPU concentrations for period 1.

matched the observed values reasonably well throughout the
>10 year period of modelling (d = 0.942, r = 0.899) (Fig. 2a). The
sharp peaks indicated that the system was highly responsive even
after aggregating drain flows for the irregular sampling periods.
System responsiveness was preserved because the sampling
periods were short (1–18 days) compared with the overall period
of record. The uncalibrated model also provided fairly good
agreement between predicted and observed IPU concentrations,
especially for periods 1 and 3 (Fig. 2b). The arrival time of IPU
was generally well simulated, in that predicted IPU peaks occurred
within 1–4 weeks of the observed peaks. However, the 1 week
early arrival of the predicted IPU peak in period 1 (Fig. 2c) resulted
in a large SS (2630) and comparatively low values of d and r (0.479
and 0.468 respectively). Additionally, predicted IPU concentrations
were substantially less than the corresponding observed values of
6.8 µg L−1 on 3 January 1994, 7.2 µg L−1 on 30 March 1994, 3.6 µg
L−1 on 8 January 1996 and 40.8 µg L−1 on 15 November 1999
(these dates indicate the start of the sampling periods associated
with these concentrations).

3.2 Response surface analysis
The authors used a combination of response surface analysis
and inverse modelling in an attempt to improve the timing and
amount of predicted peak IPU concentrations for the calibration

and validation periods. Period 1 was focused upon for calibration,
and periods 2 and 3 were reserved for validation. For starting
(uncalibrated) values of parameters, the maximum predicted IPU
concentration in period 1 (45.4 µg L−1) arrived 1 week before the
observed peak. During the response surface analysis, DT50 and
Koc were varied in the hope of finding an optimal combination
of parameters that might delay the arrival of the predicted peak.
However, the various combinations of DT50 (1–50 days) and Koc

(5–300 cm3 g−1) only changed the magnitude of the predicted
peak and not its arrival time (data not shown). A secondary
objective of the response surface analysis was to evaluate SS and
the alternative statistic VHDI for the various combinations of DT50

and Koc. The inverses of these measures are shown in Fig. 3 such
that, the higher the value of the response surface, the better
the fit. SS−1 continued to increase as Koc and DT50 decreased,
with no clear optimal combination of parameter values (Fig. 3a).
A DT50 ridge at values greater than ≈30 days suggests non-
uniqueness that might have led to an ill-posed calibration problem
when inverse modelling was initially attempted for simultaneous
optimisation of both pesticide and macropore parameters. The
maximum value of SS−1 occurred at DT50 = 5 days and Koc = 5
cm3 g−1, which contradicts the known behaviour of IPU in
both field and laboratory studies. This suggests problems with
model structure, the data and/or SS as a measure of model
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(a)

(b)

Figure 3. Goodness-of-fit (GOF) response surfaces for various combina-
tions of half-life (DT50, days) and organic carbon sorption coefficient (Koc,
cm3 g−1) for (a) sum of squares (SS) and (b) the vertical-horizontal distance
integrator (VHDI). The GOFs are the inverses of these lack-of-fit statistics.

fit with these data. DT50 values for IPU obtained under field
and laboratory conditions were 19 days for extractable parent
and 22–48 days for extractable residue in a prior study.34 Koc

values of 132–174 cm3 g−1 were observed for IPU in laboratory
studies of European soils, one of which was from a drainage
ditch in western France with a high clay content (50%).35,36 The
lack of a clear and realistic optimal combination of DT50 and
Koc in the SS−1 response surface underscores limitations with
traditional LOF statistics based on one-to-one comparisons in
time.

In contrast to the above, the surface plot of VHDI−1 clearly
indicated improved fit at Koc = 125 cm3 g−1 and suggested
improved fit at DT50 ≈ 20 days (Fig. 3b). Both values are reasonable
and are comparable with those cited in the literature. For example,
the Koc value is similar to that shown for IPU in an online pesticide
properties database (122 cm3 g−1).24 However, the GOF surface, in
spite of showing a maximum, indicates potential non-uniqueness
in the form of a ridge along the DT50 axis.

The values of DEG (20 days) and ZKD (125 cm3 g−1) based
on VHDI response surface analysis and literature values were
considered appropriate, and were fixed in subsequent inverse
modelling. SS and VHDI were used in case 1 and case 2 modelling
for adjustment of XMPOR and CTEN only. It was anticipated
that changes in these parameters would alter predicted flow
in macropores, potentially delaying the arrival of the maximum
predicted IPU concentration in period 1. A delay of only one
sampling period would bring the predicted and observed arrival
times into agreement.

Figure 4. Relative composite sensitivities for MACRO parameters resulting
from parameter adjustment by inverse modelling controlled by sum of
squares. Definitions of model parameters are provided in Table 2.

3.3 MACRO model calibration and validation
Case 1 modelling controlled by PEST’s internal objective function
(SS) resulted in six optimisation iterations and 83 model calls
and produced the macropore parameter values shown in Table 2.
In this case, both relative composite sensitivities and correlation
coefficients for parameters were obtained. The relative composite
sensitivity measures the composite change in model output
resulting from a fractional change in the value of a parameter.15 The
relative composite sensitivities of XMPOR1–4 and CTEN1 were >1,
which indicates that these were more precisely estimated than the
remaining parameters (Fig. 4).37 None of the sensitivities was <1%
of the maximum sensitivity (18.2 for XMPOR3), suggesting that the
precision of the parameter estimates was adequate. Correlations
among XMPOR and CTEN were all below 0.95, which indicates
that problems with non-uniqueness were not encountered with
these parameters (Table 3). The maximum correlation between
any two parameters (0.791) occurred with CTEN4 and XMPOR4.
Parameter correlations below 0.95 indicate that the parameter
values can be individually estimated.37 Extreme correlation would
have required collection of more data to uniquely define the
parameters, or setting one of the parameters to a fixed value such
that only the ratio of parameters was being estimated.17

In case 1 modelling, predicted peak IPU concentration in period
1 was reduced from 45.4 to 44.4 µg L−1 compared with the
uncalibrated result, which agreed more closely with the maximum
observed concentration of 44 µg L−1. However, the predicted
arrival time was still 1 week early (Fig. 5a). The result of the
time offset was that SS was artificially inflated for the sampling
interval starting on 14 February 1994 (which includes the observed
peak) because the corresponding predicted IPU concentration
was only 1.8 µg L−1. PEST attempted to reduce period 1 SS by
increasing the nominal predicted IPU concentrations that were
concurrent with the high observed values, which pulled up the
predicted IPU curve in mid–late February and also in early April
(Fig. 5a). The April predictions (1.4–5.8 µg L−1) overestimated
observed IPU concentration. This is in contrast to the uncalibrated
modelling results, in which early April predictions (1.3–2.0 µg
L−1) were very similar to observed IPU values (1.2–2.3 µg L−1)
(Fig. 2c). Additionally, maximum predicted IPU concentration in
late January 2002 (8.6 µg L−1) (period 3 used for validation) is
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Table 3. Correlation matrix for boundary soil water content (XMPOR) and boundary soil water tension (CTEN) corresponding to soil layers 1 to 4
and derived from inverse modelling based on sum of squares

XMPOR1 XMPOR2 XMPOR3 XMPOR4 CTEN1 CTEN2 CTEN3 CTEN4

XMPOR1 1.000 −0.459 0.188 −0.072 −0.315 −0.102 −0.056 −0.114

XMPOR2 −0.459 1.000 −0.387 0.108 −0.116 −0.160 0.021 0.023

XMPOR3 0.188 −0.387 1.000 −0.578 −0.487 −0.304 0.388 −0.260

XMPOR4 −0.072 0.108 −0.578 1.000 0.484 0.402 0.102 0.791

CTEN1 −0.315 −0.116 −0.487 0.484 1.000 0.412 0.014 0.281

CTEN2 −0.102 −0.160 −0.304 0.402 0.412 1.000 0.050 0.409

CTEN3 −0.056 0.021 0.388 0.102 0.014 0.050 1.000 0.194

CTEN4 −0.114 0.023 −0.260 0.791 0.281 0.409 0.194 1.000
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Figure 5. Observed versus predicted IPU concentrations for (a) calibration and (b) validation periods after adjustment of macropore parameters by
inverse modelling controlled by sum of squares (SS); (c, d) the same, but inverse modelling controlled by the vertical-horizontal distance indicator (VHDI).

an order of magnitude greater than the corresponding observed
value (0.8 µg L−1) (Fig. 5b), and differs substantially from the earlier
prediction by the uncalibrated model (0.9 µg L−1).

The correlation between predicted and observed IPU con-
centrations was somewhat improved by case 1 modelling for
calibration period 1 (r = 0.757) compared with the uncalibrated
model (r = 0.468) (Table 4). The index of agreement indicated

only marginal improvement for period 1 (d = 0.520 for case 1
modelling and d = 0.479 for the uncalibrated model). The index
of agreement has an SS term in the numerator and is sensitive to
extreme values.22 Therefore, it is subject to the same limitations as
the SS LOF statistic when observed and predicted peaks arrive at
different times. As SS in the numerator increases, d decreases. The
correlation coefficient is also susceptible to extreme values38 and
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Table 4. Model-fit statistics for calibration and validation periods before and after adjustment of macropore parameters by inverse modelling
controlled by sum of squares and by the vertical-horizontal distance integrator. Both the sum of squares and index of agreement use the squared
differences of observed and predicted values that are concurrent in time

Calibration Validation

Model fit statistic

Period 1
(28 December 1993–30

October 1995)

Period 2
(18 October 1999–10

September 2001)

Period 3
(17 September 2001–28

July 2003)

Uncalibrated
Sum of squares 2630 1790 23.8

Index of agreement 0.479 0.247 0.316

Correlation coefficient 0.468 0.038 −0.047

Vertical-horizontal difference integrator 6.16 33.0 38.0

Case 1 – calibration by sum of squares

Sum of squares 2000 1800 94.6

Index of agreement 0.520 0.226 0.170

Correlation coefficient 0.757 0.026 0.172

Vertical-horizontal difference integrator 6.01 33.3 24.5

Case 2 – calibration by vertical-horizontal distance integrator

Sum of squares 2310 1920 26.4

Index of agreement 0.511 0.233 0.660

Correlation coefficient 0.884 0.023 0.606

Vertical-horizontal difference integrator 6.02 30.5 1.25

should be interpreted with caution. However, the squared differ-
ences in r are based on the means of the observed and predicted
concentrations and may be more resistant to the effects of the
timing offsets. The index of agreement and r were low for period 3
(0.170 and 0.172 respectively), which had substantially lower ob-
served IPU concentrations than period 1, relative to predicted IPU.
Case 1 modelling yielded the lowest calibration SS (2000), which
was expected because PEST attempts to minimise an SS-based
objective function. However, SS increased slightly for periods 2
and 3 compared with the uncalibrated model (Table 4).

Case 2 modelling controlled by VHDI resulted in three PEST
iterations and 101 model calls and produced the parameter values
shown in Table 2. The maximum predicted IPU concentration for
period 1 (45.4 µg L−1) was reduced to 44.5 µg L−1. However,
the arrival time of the predicted IPU peak remained unchanged
(Fig. 5c). Nonetheless, predicted IPU concentrations in early April
(1.7–1.8 µg L−1) were bracketed by the observed values, and
predicted concentrations in validation periods 2 and 3 fitted the
observed data fairly well (Fig. 5d). Model fit for period 1 improved
compared with the uncalibrated version according to all four
indices. For example, the correlation coefficient increased to 0.884
and the value of VHDI decreased from 6.16 to 6.02 (Table 4).
The index of agreement (0.511) saw less improvement than r
discussed above. The improved model fit was particularly dramatic
for validation period 3, which saw a reduction in VHDI from 38.0
to 1.25, an increase in r from −0.047 to 0.606 and an increase
in d from 0.316 to 0.660. The peak predicted IPU concentration
for period 3 (4.8 µg L−1) agrees more closely with the maximum
observed value of 3.6 µg L−1 (Fig. 5d), which was improved over
both the uncalibrated model and case 1 modelling results. VHDI
also indicated some improvement in model fit for validation
period 2 compared with case 1 modelling (Table 4). The maximum
predicted IPU concentration increased from 15.4 (uncalibrated
version) to 18.7 µg L−1 for period 2, which is somewhat closer to
the observed peak value of 40.8 µg L−1 (Fig. 5d).

Figures 6a to d are provided to enable more direct comparison
of cases 1 and 2 for the four model fit indices (SS, d, r and
VHDI). Period 1 SS decreased from 2630 to 2000 in the following
order: uncalibrated model > case 2 modelling > case 1 (Fig. 6a). As
mentioned above, this is reasonable because case 1 modelling was
controlled by the internal objective function in PEST. Correlations
between predicted and observed IPU concentrations increased for
both periods 1 and 3 in the following order: uncalibrated model
< case 1 < case 2 (Fig. 6c). Thus, the correlations were maximised
for periods 1 (r = 0.884) and 3 (r = 0.606) when the inverse
modelling was controlled by VHDI. SS-based inverse modelling
improved correlations (r = 0.757 and 0.172 for periods 1 and 3
respectively) compared with the uncalibrated model, but not to
the same degree.

All four indices indicate that model fit was better for the
second of two validation periods when the inverse modelling was
controlled by VHDI rather than SS (SS = 26.4, d = 0.660, r = 0.606,
and VHDI = 1.25). VHDI decreased for period 3 in the following
order: uncalibrated model > case 1 > case 2 (Fig. 6d). As discussed
above, reduction in VHDI in case 2 modelling was particularly
dramatic for period 3 and was corroborated by visual inspection
of Fig. 5d. Model fit in period 3 was also improved, compared
with the uncalibrated version, by SS-controlled inverse modelling
(VHDI = 24.5), but not to the same degree (Fig. 6d).

Neither method of calibration was able to shift the timing
of the predicted peak IPU concentration in period 1. This
lack of movement may have resulted from aggregation of IPU
concentrations over the irregular sampling periods. For calibration
purposes, the daily predicted values were processed by the
Perl program to obtain average values for comparison with
the composite samples. Thus, the predicted daily values are
somewhat buffered from the inverse modelling step. Plots of daily
values are useful in order more readily to discern the effects
of macropore parameter adjustment on predicted drainflows
and IPU concentrations, and are discussed here in the context
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Figure 6. Model fit indices for the uncalibrated MACRO model and for inverse modelling controlled by sum of squares (SS) and by the vertical-horizontal
distance integrator (VHDI), for calibration and validation periods. The four model fit indices are (a) SS, (b) index of agreement, (c) correlation coefficient
and (d) VHDI. Both SS and the index of agreement use the squared differences of observed and predicted values that are concurrent in time.

of calibration using VHDI. For an individual drainage event,
drainflow and IPU concentration at early times were slightly
reduced after parameter adjustment, while those at later times
increased somewhat. For example, MACRO predicted almost
twofold increases in drainflow (Fig. 7a) and over threefold increases
in IPU concentration (Fig. 7b) on the recession part of the curves
during 13–20 February 1994 as a result of the adjusted macropore
parameters. Relative composite sensitivities computed by PEST
during case 2 modelling suggest that most of the effect resulted
from changes in XMPOR1, XMPOR2 and XMPOR3 (data not shown).
Estimates of all three parameters were less than the starting values
(Table 2). These effects were confirmed by performing additional
MACRO simulations in which XMPOR1, XMPOR2 and XMPOR3
were decreased one at a time while all other parameters were
held constant. Parameter XMPOR1 (boundary water content in the
first soil layer) influenced drainflows and IPU concentrations at
early times for a particular drainage event, whereas XMPOR2 and
XMPOR3 (layers two and three) influenced later times. In general,
decreasing XMPOR resulted in greater generation of macropore

flow by the model. This contributed to an overall increase in
predicted drainflows and IPU fluxes attributable to macropores
during the >10 year simulation period. Cumulative predicted
drainflow in macropores increased from 3910 to 4090 mm after
parameter adjustment by VHDI, and cumulative predicted IPU
flow from macropores to drains increased from 7.1 to 8.2 mg m−2.
These changes were sufficient to have increased predicted peak
IPU concentration in both validation periods, which benefited
case 2 model fit for these periods. The effect was more subtle than
in case 1 modelling, which saw overprediction of IPU for both
calibration and validation periods.

4 CONCLUSIONS
The following conclusions were drawn from this research:

1. The uncalibrated MACRO model fitted the observed drainflow
and IPU concentration data reasonably well, especially
considering that the simulation period exceeded 10 years.

Pest Manag Sci (2009) c© 2009 Society of Chemical Industry www.interscience.wiley.com/journal/ps



www.soci.org BT Nolan, IG Dubus, N Surdyk

12
-1

-1
99

3

1-
1-

19
94

2-
1-

19
94

3-
1-

19
94

4-
1-

19
94

5-
1-

19
94

6-
1-

19
94

0

5

10

15

Feb. 13 - 20, 1994

Predicted daily flow (uncalibrated), mm
Predicted daily flow (VHDI calibrated), mm

D
ra

in
flo

w
, m

m

12
-1

-1
99

3

1-
1-

19
94

2-
1-

19
94

3-
1-

19
94

4-
1-

19
94

5-
1-

19
94

6-
1-

19
94

0

20

40

60

80

100

Feb. 13 - 20, 1994

Predicted daily IPU conc. (uncalibrated), mg L−1

Predicted daily IPU conc. (VHDI calibrated), mg L−1

IP
U

 c
on

ce
nt

ra
tio

n,
  m

g 
L−1

(a)

(b)

Figure 7. Observed and predicted daily flows (a) and daily IPU concentra-
tions (b) for period 1 before and after parameter adjustment by inverse
modelling controlled by the vertical-horizontal distance indicator (VHDI).

Isoproturon arrival times were simulated more accurately than
peak concentrations.

2. VHDI used in conjunction with inverse modelling software
provided an effective, alternative means of calibrating the
MACRO model for a system characterised by transient
drainflows and short-lived pesticide concentrations. This
approach outperformed SS-based inverse modelling for the
second of two validation periods according to all four model
fit indices (SS = 26.4, d = 0.660, r = 0.606 and VHDI =1.25).
SS did not account for offsets in arrival times of observed
and predicted peak solute concentrations, which is potentially
limiting in responsive systems. Similarly, d was susceptible to
the time offsets because it includes SS in the numerator, which
may have limited its effectiveness somewhat with these data.

3. Macropore parameters generally were well estimated by these
data, according to parameter correlations and sensitivities
from inverse modelling controlled by SS. All of the pa-
rameter correlations were well below 0.95 (absolute value
basis), a threshold above which parameter non-uniqueness
is a problem. XMPOR1–4 and CTEN1 had relative composite
sensitivities greater than 1, indicating that they were more pre-
cisely estimated than the remaining CTEN parameters. Inverse

modelling controlled by VHDI did not yield parameter cor-
relations. However, the VHDI−1 response surface provided
useful information on potential parameter non-uniqueness
and allowed identification of an optimal Koc –DT50 combina-
tion. Thus, response surface analysis simplified the inverse
modelling and was a useful complement to VHDI.

4. Neither method of inverse modelling (VHDI or SS controlled)
improved the predicted IPU arrival time for period 1, which
was early by one sampling interval. This is probably because
the predicted daily flows had to be aggregated to match the
irregular sampling periods in order to compute the inverse
modelling objective functions.
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