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Disclaimer

Every effort has been made to ensure that all information in this document is correct at the

time of publication.  However, MAFF, Cranfield University and the authors do not accept

liability for any error or omission in the content, or for the consequences of the use of the

information presented.

Information contain herein does not necessarily reflect the policy or views of MAFF or the

Pesticides Safety Directorate.
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Foreword

In 1998, the Ministry of Agriculture, Fisheries and Food (MAFF) commissioned SSLRC to

undertake sensitivity analyses for the leaching models used for pesticide registration in

Europe.  This document provides a description of the methods which were adopted for these

investigations, a presentation of results obtained and implications of the findings for

modelling activities and submission of modelling studies for pesticide registration.  More

details on the methods and results are presented in a separate document which gathers

appendices.

The preferred reference to this report is as follows:

DUBUS I.G., BROWN C.D. & BEULKE S. (2000).  Sensitivity analyses for leaching models

used for pesticide registration in Europe.  SSLRC report for MAFF PL0532, Silsoe, Beds.,

UK, 85p.

The two other documents produced within the scope of this project are referenced as follows:

DUBUS I.G., BROWN C.D. & BEULKE S. (2000).  Sensitivity analyses for leaching models

used for pesticide registration in Europe - Appendices.  SSLRC report for MAFF PL0532,

Silsoe, Beds., UK, 238p.

DUBUS I.G., BROWN C.D. & BEULKE S. (2000).  Sensitivity analyses for leaching models

used for pesticide registration in Europe - A quick reference guide.  SSLRC report for

MAFF PL0532, Silsoe, Beds., UK, 82p.
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Executive summary

Although pesticide leaching models have played an increasing role in the registration of

pesticides in Europe, little is known about which input parameters most influence model

predictions.  This information is crucial for quality modelling and for an effective assessment

of modelling studies which estimate the risk for a pesticide to impact on the environment.

Sensitivity analyses were carried out for the latest versions of the four primary leaching

models used for pesticide registration in Europe (PELMO 3.00, PRZM 3.14, PESTLA 3.4 and

MACRO 4.1).  Sensitivity of the models was investigated using two investigation methods

(one-at-a-time sensitivity analysis and Monte Carlo sensitivity analysis) and four scenarios

describing the leaching of two pesticides (Pesticide “L”, Koc 20 ml/g, laboratory DT50 value

20 days; Pesticide “T”, Koc 100 ml/g, laboratory DT50 value 100 days) in two soils (a sandy

loam of the Wick series and a more structured clay loam of the Hodnet series).  The influence

of the variation of a large number of input parameters on the prediction of percolation

volumes and total pesticide losses was investigated.  Input parameters were varied within

bounds defined by their uncertainty.

The magnitude of the sensitivity of the models was found to be dependent on the model

output considered.  Predictions of water percolation were only marginally affected by

changes in input parameters considered in this project.  The major driver of percolation

predictions is therefore the meteorological data, especially rainfall measurements and

potential evapotranspiration data.  In contrast to percolation, predictions of pesticide losses

were dependent on a large number of parameters and to a much greater extent.  The ranking

of input parameters according to their influence on the prediction of pesticide losses was

affected by the initial scenario considered.  In most model-scenario combinations considered

in this study, parameters which had the largest influence on pesticide predictions were those

related to sorption (Freundlich coefficient and exponent) and degradation (either degradation

rates or DT50 values, QTEN value).  A large influence of soil parameters (field capacity, soil

moisture content at the beginning of the simulation period and bulk density) was also noted in

a small number of specific scenarios for all models.  For the dual porosity model MACRO,

the influence of sorption and degradation parameters was surpassed by the influence of soil

parameters specific to the definition of the boundary between micropores and macropores for

one of the two scenarios involving the more structured clay loam.

..  / ..
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Large sensitivities were identified for all four models and model predictions for pesticide

losses should therefore be considered as uncertain.  Uncertainty is indirectly taken into

account at lower tiers of the environmental risk assessment for pesticides by the use of

uncertainty factors (e.g. in the Toxicity Exposure Ratio approach).  At higher tiers, conditions

closer to reality are considered and uncertainty factors are reduced or removed.  Given the

sensitivities reported in this study, it is appropriate that the uncertainty in modelling

predictions is taken into account at higher tiers.  Results from this study should be considered

a starting point to: i) investigate the uncertainty in modelling predictions resulting from

uncertainties in model input, and ii) perform probabilistic modelling (i.e. include uncertainty

considerations in the predictions that are made).  The information should also be used when

performing model calibrations against experimental data.
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1. INTRODUCTION

Mathematical modelling has been increasingly used in the last two decades to assess the fate

of pesticides in the environment and the potential for contamination of surface waters and

groundwater.  So far, modelling developments have mainly concentrated on the prediction of

pesticide losses by leaching (i.e. the estimation of the presence of pesticides in the water

percolating out of the soil profile).  Mathematical modelling  has been given a prominent role

in the fate and behaviour section of the registration process of plant protection products in

Europe following the publication of the EU directive 91/414.  According to this document, the

environmental risk assessment for pesticides is based on a tiered approach where first

assessments are based on simplified assumptions and further investigations of increasing

complexity are triggered by the failure to meet threshold criteria.  The FOCUS working group

on leaching scenarios has recommended the use of four leaching models for pesticide

registration (i.e. PELMO, PESTLA, PRZM and MACRO).  Although these four models are

used routinely in the preparation of modelling submissions for registration, little is known

about the influence of variation of model input on model predictions (i.e. the sensitivity of the

models).

The end-product of a sensitivity analysis is traditionally a list of input parameters classified by

their influence on selected model predictions.  Such information is vital for the overall

community of model developers, model users and regulators working on leaching of

pesticides in soils.  It helps model developers to identify input parameters that have little or no

influence on model output and therefore helps them to identify subroutines which could be

simplified or deleted.  It is also a good way to identify coding errors.  A list of the most

influential parameters will greatly assist model users.  They can concentrate their time and

financial resources on selection of the most sensitive parameters and identify the parameters

that should be modified first when performing a model calibration.  This information also

benefits regulators evaluating modelling submissions in highlighting the parameters for which

adequate justification in the choice of values is needed and in helping them to focus on the

attribution of values to the most important parameters.  Finally, results from a sensitivity

analysis are useful for identifying research required for strengthening the knowledge base in

order to reduce the uncertainty in model predictions.
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In this project, we performed sensitivity analyses for the latest versions of the four leaching

models used for pesticide registration in the EU (MACRO 4.1, PELMO 3.00, PRZM 3.14β

and PESTLA 3.4).  Two different investigation methods were used and compared (i.e. one-at-

a-time and Monte Carlo based sensitivity analyses).  Since it is known that results from

sensitivity analyses can be dependent on the scenario considered, four different scenarios

resulting from the simulation of the fate of two pesticides in two different soils were

considered.  Sensitivity was investigated with regard to predictions for percolation volumes

and pesticide losses via leaching.  This document reports on the methodology that was

followed and presents the results obtained for each model.  Implications for modelling

activities and submission of modelling studies to regulatory authorities are put forward.  More

detailed information on the approach and results is available as appendices in a separate

document.

2. MATERIAL AND METHODS

2.1 CASE STUDIES

It has been shown that results of sensitivity analyses are dependent on the base-case scenarios

that have been selected (Ferreira et al., 1995).  With regard to pesticide fate models, it is not

expected that the most sensitive parameters for leaching models will be the same in a sandy

and in a clay soil, for instance.  Similarly, models may not show the same sensitivity for

different molecules.  It was therefore decided to conduct the sensitivity analysis on a total of

four different scenarios to cover a range of environmental situations.  Sensitivity was

investigated for the leaching of two pesticides with contrasting properties in a sandy loam and

a clay loam soil.  A single weather dataset was used for all scenarios.

2.1.1 Weather data

Weather data were selected from long-term measurements from the Wrest Park weather

station (Silsoe, Bedfordshire, UK).  The year 1979 was chosen from a 30-year dataset as

being wetter than average (700.4 mm of rainfall compared to a long-term mean of 575 mm,

97th percentile for the period 1965-1996 in Silsoe), and as being particularly wet during the

winter and spring periods (Table 1).  This choice was made to ensure that the weather

scenario would be relevant to a large portion of the country and Europe, and that the

pesticides which were chosen would leach to at least 1-m depth.
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Potential evapotranspiration (PET) was calculated outside the various models using the

Penman-Monteith formula (FAO, 1991) and detailed meteorological information.  Monthly

summaries for the weather dataset are provided in Table 1.

The data were repeated to enable a maximum simulation of 10 years.  The reason for

repeating a year rather than taking real meteorological data for 10 years is that models were

run for the minimum amount of time that encompassed the full leaching breakthrough.

Having the same weather information between years meant that the comparison between

modelling scenarios with different duration was still meaningful.

Rainfall

mm

Mean air

temperature

°C

Mean air

minimum temp.

°C

Mean air

maximum temp.

°C

PET

mm

Sunshine

hours

January 51.4 -0.8 -4.2 2.5 7.5 57.5

February 36.8 0.9 -1.4 3.2 12.0 55.0

March 101.6 4.7 1.4 8.1 34.1 99.6

April 73.8 7.7 3.8 11.6 55.2 116.5

May 72.0 10.7 6.0 15.3 86.6 196.7

June 23.0 13.8 9.2 18.3 89.0 164.0

July 12.0 16.1 10.9 21.4 103.4 181.5

August 107.8 15.5 10.7 20.3 85.0 175.9

September 12.3 13.5 8.3 18.7 61.8 170.5

October 61.4 10.8 6.4 15.2 28.5 125.3

November 40.8 6.4 3.0 9.8 14.7 67.4

December 107.5 5.7 3.1 8.4 14.6 58.2

Total 700.4 8.7 4.8 12.7 592.3 1468.1

Table 1.   Monthly summary of meteorological data for the year 1979 in Silsoe, Beds., UK

2.1.2 Soil and cropping data

Soils from the Wick (sandy loam) and Hodnet (clay loam) series were selected to reflect

contrasting conditions with regard to the transfer of water and solutes.  These two soils are

being used in an on-going MAFF funded lysimeter study (PL0523, Lysimeter study to

investigate the effect of rainfall patterns on pesticide leaching and the viability of stochastic

modelling approaches for risk quantification) and detailed profile information and soil

properties were available.

Soils of the Wick series are deep, uniformly coarse textured, free draining sandy loams

formed on loose, sandy or sandy gravelly glacial, fluvoglacial or river terrace deposits.  They
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have low water retention and, under arable cultivation, low organic matter contents.  The soils

normally overlie local aquifers or groundwater bodies at between 2 and 10 metres from the

surface.  Wick soils were selected for this study because they are extensively used for arable

cropping and have a high soil leaching potential.  According to the Environment Agency’s

groundwater vulnerability classification (NRA, 1992), they are grouped with class H2 soils

which readily transmit a wide range of pollutants because of their rapid drainage and low

attenuation potential.  Wick soils and their hydrological equivalents (HOST class 5; Boorman

et al., 1995) are widely distributed throughout England and Wales (765,448 ha, 7.3% of

agricultural land).

Soils of the Hodnet series are deep, fine loamy, reddish soils formed on interbedded reddish

sandstones and mudstones.  They have slowly permeable horizons in the subsoil which

restrict the downwards movement of water and these soils are occasionally waterlogged

(wetness class II or III).  Hodnet soils belong to HOST class 18 which occupies 861,553 ha in

England and Wales (8.3% of agricultural land).

Tables 2 and 3 present selected physico-chemical characteristics and water retention data for

the two soils.  Soil profiles were adjusted to 1-m depth to enable a sound comparison between

model results from the different scenarios.

Wick Hodnet

0-20

cm

20-50

cm

50-75

cm

75-100

cm

0-33

cm

33-60

cm

60-80

cm

80-100

cm

Organic carbon (%) 1.70 0.80 0.30 0.20 1.15 0.48 0.40 0.30

Sand (%) 57 70 73 77 33 42 29 26

Silt (%) 33 20 16 9 48 42 48 55

Clay (%) 10 10 11 14 19 16 23 19

Texturea SL SL SL SL CL ZCL CL CL

Bulk density 1.35 1.45 1.41 1.53 1.39 1.62 1.55 1.48

pH H2O 6.5 7.0 7.0 6.9 6.7 6.8 6.8 6.8
   a  SL: sandy loam, CL: clay loam, ZCL: silty clay loam

Table 2.  Selected physicochemical properties for the Wick and Hodnet soils
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Wick Hodnet

0-20

cm

20-50

cm

50-75

cm

75-100

cm

0-33

cm

33-60

cm

60-80

cm

80-100

cm

W0kPa (% vol) 46.6 39.6 39.0 34.3 46.8 38.8 41.5 44.0

W5kPa (% vol) 27.8 19.1 14.7 19.2 34.9 30.8 32.2 35.8

W10kPa (% vol) 24.1 17.0 11.7 16.4 33.7 29.9 31.4 35.0

W40kPa (% vol) 19.7 14.2 8.7 13.4 31.2 26.7 28.9 31.8

W200kPa (% vol) 15.1 10.8 6.0 9.8 25.1 24.2 24.5 26.6

W1500kPa (% vol) 10.5 7.9 4.4 7.7 16.8 17.9 19.9 20.1

Table 3.  Water retention data for the Wick and Hodnet soils

(soil water content for a given pressure)

The simulated crop was winter wheat in each year and this was considered to emerge on 12

October and to be harvested on 7 August the next year (crop maturation was considered to

occur on 24 June).  These cropping dates are typical of wheat cultivation in the UK (Hough,

1990).

2.1.3 Pesticide and application data

Two hypothetical molecules with different sorption and degradation properties were

considered.  The properties of the two pesticides are presented in Table 4.  The first

compound (Pesticide L) has a Koc of 20 ml g-1, a field DT50 of 20 days and is slightly

volatile.  The second molecule (Pesticide T) is non-volatile and has larger Koc and field DT50

(100 ml g-1 and 60 days, respectively).  Both molecules are classified as ‘Leachers’ according

to the GUS classification (Gustafson, 1989) and are therefore likely to move out of the soil

profile in some circumstances.  These basic properties were used for all four scenarios for the

four models.

The two pesticides were considered to be applied on 1 November of the first year only at an

application rate of 2.0 kg a.s. ha-1.  No correction was made to account for interception of the

spraying solution by the crop.
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Pesticide L Pesticide T

Sorption

Koc (ml g-1)

Kom (ml g-1)

20.0

11.6

100.0

58.1

Degradation

DT50 at 8°C (days)

DT50 at 20°C (days)

kdeg at 20°C (day-1)

20

7.8

0.0893

60

23.3

0.0298

Volatility

H (J mol-1) at 20°C

H’ (dimensionless) at 20°C

1.2×10-3

5.0×10-7

2.4×10-7

1.0×10-10

Table 4.  Sorption, degradation and volatility characteristics

of the two hypothetical pesticides

2.1.4 Modelling strategy

The fate of the two molecules in the two contrasting soils was predicted using PELMO 3.00

(July 1998), PESTLA 3.4 (September 1999), PRZM 3.14 in its β version (December 1999)

and MACRO 4.1 (July 1998).  The sensitivity of the four models was assessed using the

predictions for percolation (“percolation” in MACRO and PESTLA, “recharge” in PELMO

and PRZM) and for total pesticide losses in leachate over the running period.  No calibration

against measured data was carried out.  Models were run for the minimum amount of time

that allowed full leaching breakthrough to occur.

The four scenarios were referred to using a combination of three letters.  The first letter

designates the model (M=MACRO, O=PELMO, A=PESTLA, Z=PRZM), the second letter

designates the pesticide (L or T) and the third letter designates the soil (W=Wick series,

H=Hodnet series).  For instance, MLW refers to the prediction of the fate of pesticide L in the

Wick soil by the MACRO model.

2.1.4.1 MACRO

Preliminary tests on the four scenarios selected for investigation of sensitivity revealed that

the minimum number of years needed to include all pesticide losses in percolation was four

years except for the scenario “Pesticide T on Wick” for which six years were required.

Comparisons between all four scenarios remained possible because predicted annual recharge

is constant throughout the simulation period except for the first year and cumulative loss is
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used.  A total of 43 “primary” parameters was considered for variation (Table 5).  Where

parameters were depth-dependent, input values for the subsoil were modified at the same time

as parameters for the topsoil by linking them using coefficients derived from the base

scenarios (e.g. when the sorption coefficient was modified by 10% in the topsoil, the values

for the subsoil were varied by the same percentage).  In the end, a total of 99 input parameters

were varied (43 primary parameters + 56 linked parameters).  Degradation rates were varied

with depth according to the equation implemented in MACRO_DB (Jarvis et al., 1997).

Initial moisture contents at the start of the simulation were set to field capacity.  An example

input file (scenario MLW) is provided in Appendix 1.
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Parameter Brief description Links between topsoil

and subsoil parameters

1 ANNAMP Temperature annual amplitude

2 ANNTAV Average annual temperature

3 ASCALE Effective diffusion pathlength ü

4 BETA Root adaptability factor

5 CANCAP Canopy Interception Capacity

6 CANDEG Canopy degradation rate

7 CFORM Form factor

8 CRITAIR Critical soil air content for root water uptake

9 CTEN Boundary soil water tension ü

10 DEG Degradation rates ü

11 DFORM Form factor

12 DIFF Diffusion coefficient in water

13 DV Dispersivity

14 EXPB Exponent moisture relation

15 FEXT Canopy wash-off coefficient

16 FRACMAC Fraction sorption sites in macropores

17 FREUND Freundlich exponent

18 FSTAR Solute concentration factor

19 GAMMA Bulk density ü

20 KSATMIN Saturated hydraulic conductivity ü

21 KSM Boundary hydraulic conductivity ü

22 LAIHAR Leaf Area Index at harvest

23 LAIMAX Maximum Leaf Area Index

24 LAIMIN Leaf Area Index at zdatemin

25 RINTEN Rainfall intensity

26 ROOTINIT Root Depth at zdatemin

27 ROOTMAX Maximum root depth

28 RPIN Root distribution

29 TEMPINI Initial soil temperature ü

30 THETAINI Initial soil moisture ü

31 TPORV Saturated water content ü

32 TRESP Exponent temperature response

33 WATEN Critical water tension for root water uptake

34 WILT Wilting point ü

35 XMPOR Boundary soil water content ü

36 ZALP Correction factor for wet canopy evaporation

37 ZFINT Fraction of irrigation intercepted by canopy

38 ZHMIN Crop height at zdatemin

39 ZKD Sorption coefficient ü

40 ZLAMB Pore size distribution index ü

41 ZM Tortuosity factor micropores ü

42 ZMIX Mixing depth

43 ZN Pore size distribution factor macropores ü

Table 5.  List of MACRO parameters which were included in the sensitivity analysis
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2.1.4.2 PELMO

Preliminary tests conducted for the four scenarios revealed that the running time sufficient to

achieve complete leaching of the two pesticides was four years for the OLW scenario, nine

years for the OTW scenario, seven years for the OLH scenario and ten years for the OTH

scenario.  These leaching times are significantly larger than those for MACRO.

Four options are proposed for the flag regulating the introduction of evapotranspiration in

PELMO (1. calculation of potential evapotranspiration (PET) using temperature only; 2. use

of measured pan evaporation data; 3. calculation of PET using the Haude formula; 4. own

data).  Since PET was calculated outside the model using the Penman-Monteith equation, PET

data were directly fed into the model using option 4 and runs were carried out using this

procedure.  Although this is not specified in the PELMO user’s manual, option 4 corresponds

to a situation where crop-specific evapotranspiration data have been measured in the field

(hence results obtained when running PELMO with option 4 and option 2 with a pan factor of

1 are different).  It is desirable that modellers are made aware of the detailed data

requirements of option 4 since this is not specified in the user’s manual of PELMO and this

might lead to inaccuracies if PET data estimated by standard equations are fed into the model

using option 4.  Checking tests were carried out after the main runs and showed that the use of

option 4 for the evaporation flag in this study resulted in the lack of sensitivity of the

prediction of recharge by PELMO to the parameters ANET (minimum depth for evaporation)

and AMXD (maximum active root depth).  This is because PELMO assumes that water

extracted by evaporation is taken within a constant profile depth when option 4 is selected.

PELMO offers the possibility to simulate both pesticide losses induced by run-off and the

effect on leaching of an increase in sorption with time.  These features were not used in this

study because it was decided to maintain consistency of approach for all four leaching

models.  Sorption coefficients and degradation coefficients were introduced directly into the

model.  Degradation rates were varied with depth using the same factors as used for MACRO.

Table 6 presents the 18 “primary” parameters within PELMO which were considered for

investigation.  Adding the parameters that were linked to the primary variables, 44 parameters

were varied in total.  Examples of input files (scenario OLW) are provided in Appendices 59

and 60.

Water content at the beginning of the simulation (WC) was set to field capacity (FC).
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Parameter Brief description Links between topsoil

and subsoil parameters

1 ANET Depth to which ET is computed

2 CINT Average annual temperature

3 AMXD Maximum active rooting depth

4 COVM Maximum areal coverage

5 UPTK Plant uptake efficiency factor

6 BUD Bulk density ü

7 WC Initial soil water content ü

8 FC Field capacity ü

9 WP Wilting point ü

10 PDRA Plant decay rate

11 FEXT Foliar extraction coefficient

12 HENR Henry’s constant

13 DEGR Degradation rate ü

14 QTEN Increase given a temperature increase of 10°C

15 ASM Absolute soil moisture

16 MEXP Exponent for moisture correction

17 KF Freundlich coefficient ü

18 NF Freundlich exponent ü

Table 6.  List of PELMO parameters which were included in the sensitivity analysis

2.1.4.3 PRZM

The version of PRZM which was used was that produced for the integration of the FOCUS

scenarios (version 3.14β, “FOCUS release”).  However, the executable WINPRZM was used

as a standalone program outside the Windows FGRAT shell.  This particular version was used

because version 3.12 does not include descriptions of either sorption by the Freundlich

equation or the influence of soil moisture and temperature on degradation.  The use of the

upgraded version ensured that all models considered in this project used had more or less the

same capabilities with regard to the description of sorption and degradation.  It was decided to

run the PRZM model for 10 years, irrespective of the time required for total loss of the

pesticides by leaching because the running time for 10 years is insignificant compared to that

for other models.  Examination of the initial runs confirmed that a running time of 10 years

allowed total leaching of both pesticides in the two soils.

PRZM offers the possibility of simulating volatilisation, an increase in sorption with time and

of describing degradation using a bi-phasic equation, but corresponding subroutines were

turned off.  The Kd values for the parameters related to sorption were directly input into the

files (i.e. the Koc option was not used).  Degradation rates were varied with depth using the
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same factors as for MACRO.  Water content at the beginning of the simulation was set to the

value for field capacity.

A list of all PRZM parameters considered for variation in this exercise is presented in Table 7.

A total of 40 parameters were included in the sensitivity analysis (i.e. 22 primary parameters

and 18 subsoil parameters for which variation was linked to that for topsoil parameters).  An

example input file (scenario ZLW) is provided in Appendix 116.

Parameter Brief description Links between topsoil

and subsoil parameters

1 ANET Minimum depth for extraction of evaporation

2 CINT Maximum interception storage

3 AMXD Maximum rooting depth

4 COVM Maximum areal coverage of canopy

5 HTMA Maximum canopy height

6 UPTK Plant uptake factor

7 PLDK Pesticide decay rate on canopy

8 FEXT Foliar extraction coefficient

9 NF Freundlich exponent

10 A Albedo

11 EM Emmissivity

12 T Average monthly temp at BB

13 QTEN qten

14 MEXP Moisture exponent for degradation

15 ASM Reference moisture for degradation

16 BD Bulk density ü

17 FC Field Capacity ü

18 DEG Degradation rate ü

19 WP Wilting point ü

20 OC Organic carbon content ü

21 KD Freundlich coefficient ü

22 TINI Initial temp of the horizon

Table 7.  List of PRZM parameters which were included in the sensitivity analysis

2.1.4.4 PESTLA

Although preliminary tests revealed that six years were necessary to achieve complete

leaching of the two pesticides in the soils considered, SWAP/PESTLA were run for a total of

10 years as this enabled an easier processing of model output.  A total of 34 primary input

parameters were considered for variation (Table 8).  Where parameters were depth-dependent,

parameters for the subsoil were modified at the same time as those for the topsoil by linking

them using coefficients derived from the base-case scenarios.  In the end, a total of 142 values

for input parameters was modified (34 primary input parameters + 108 tied parameters).
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Sorption was described using the Kom concept and sorption coefficients were therefore varied

with depth according to the organic matter content.  Factors for the modification of

degradation with depth were similar to those used for MACRO and were kept to their nominal

values.  Example of input files (scenario ALW) are provided in Appendices 174-181.

Parameter Brief description SWAP (S) /

PESTLA (P)

Links between topsoil

and subsoil parameters

1 G1 Residual moisture content S ü

2 G2 Saturated moisture content S ü

3 G3 Saturated hydraulic conductivity S ü

4 G4 Alpha main drying curve S ü

5 G6 Parameter n S ü

6 COFR Soil evaporation coefficient of Blak and Boesten

or Boesten/Stroosnijder

S

7 RSIG Minimum rainfall to reset models S

8 PSA sand content S ü

9 PSI silt content S ü

10 PCL clay content S ü

11 ORG organic matter content S, P ü

12 RDS maximum rooting depth allowed by soil profile S

13 HI initial pressure heads S ü

14 TEMI initial soil temperatures S ü

15 IF1 Extinction coefficient for diffuse visible light S

16 IR1 Extinction coefficient for direct visible light S

17 GCTB Maximum leaf area index S

18 CFTB Crop factor S

19 RDTB maximum rooting depth S

20 RDD Root density distribution S

21 BD Bulk density P ü

22 LEDS Lengths of dispersion in liquid phase P ü

23 THAI Thickness of the stagnant air layer at soil

surface

P

24 SUWA Coefficient of diffusion in water P

25 SUAI Coefficient of diffusion in air P

26 ENSL Molar enthalpy of the dissolution process P

27 SAVP Saturated vapour pressure P

28 ENVP Molar enthalpy of the vaporisation process P

29 CFUP Coefficient of uptake by plants P

30 DEG Half-life P

31 EGCV Molar activation energy of degradation P

32 CFLI Coefficient describing the relationship between

the conversion rate and the volume fraction of

liquid

P

33 KOM Kom P

34 FREU Freundlich exponent P

Table 8.  List of PESTLA parameters which were included in the sensitivity analysis
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2.2 COMBINATION OF SENSAN AND PESTICIDE FATE MODELS

2.2.1 The SENSAN package

SENSAN (February 1997 version) is a software package running in the DOS environment

which facilitates the sensitivity analysis process by allowing a modeller to automate the task

of adjusting certain model inputs, running the model, reading the outputs of interest, recording

their values (and the whole output file if necessary) and then commencing the whole cycle

again.  SENSAN reads user-prepared parameter values and writes specified model output

values to files which can easily be imported/exported to a spreadsheet for further post-

processing.  SENSAN communicates with the model exclusively through input and output

files and is therefore model-independent and does not require any recoding of the different

models.  SENSAN is based on the same parameter recognition techniques implemented in the

inverse modelling package PEST (Doherty et al., 1994).

SENSAN uses template files (*.tpl) to modify the selected parameters in the input files and

records selected model outputs using instruction files (*.ins).  Values to be assigned to input

parameters are stored in a variation file (*.var) and ouput values are gathered in run record

files (*.sss).  The whole parameterisation of SENSAN is implemented in the control file

(*.sns).

2.2.2 Establishment of a relationship between SENSAN and pesticide fate models

SENSAN was linked to the four pesticide fate models through their input and output files and

via batch files.  Selected outputs were recorded after post-processing for the four models.

Flow charts describing the combination of SENSAN with the four models are provided in

Appendices 2, 61, 117 and 182.  Model output files were documented and archived after each

run to enable possible further use of this large amount of data in the future.

The outputs that were used to reflect the sensitivity of the models were the cumulative

percolation (‘recharge’ for some models) [in mm] and the cumulative loss of pesticide by this

pathway [in g/ha] over a number of years.  These outputs were not produced directly by the

four models and they were therefore computed automatically from other model outputs.
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For MACRO, the binary output file produced by the model was post-processed automatically

by a batch file which generated a file with the values of the cumulative percolation (MACRO

parameter ‘TFLOWOUT’) and cumulative solute leaching (MACRO parameter ‘TSOUT’).

The SENSAN instruction file then read the last values of the file.  Cumulative solute leaching

was converted from mg/m2 to g/ha.

For PELMO, cumulative recharge was calculated from the annual values of ‘recharge below

soil core’ (in cm of water) which can be found in the ‘wasser.plm’ output file.  Similarly,

cumulative pesticide losses were computed from values of ‘pesticide leached below core’

(given in kg/ha) in the ‘chem.plm’ output file for each year of the simulation period.

For PRZM, cumulative recharge was taken from the annual values for the ‘leaching output’

for the bottom layer of the profile (in cm of water).  As for PELMO, cumulative pesticide

losses were computed from annual values for ‘pesticide leached below core depth’ (given in

kg/ha).

For PESTLA, annual percolation was extracted from the file “bawafc.out” (PRBT=water

percolated annually through the bottom of the system, in mm).  Pesticide losses were

computed from the cumulative loss per area out of the bottom of the system (in kg/ha) from

the file “leacos1.out”.  Cumulative pesticide losses were converted from kg/ha to g/ha.

2.3 ONE-AT-A-TIME SENSITIVITY ANALYSIS

2.3.1 Approach

One-at-a-time sensitivity analysis is the simplest approach of its kind.  The general framework

is to repeatedly vary one parameter at a time while holding the others fixed.  It is easy to

conduct and produces results that can be readily presented in a graphical form.  A sensitivity

coefficient is the ratio of the change in output to the change in input while all other parameters

remain constant (Krieger et al., 1977).  The model output when all parameters are kept

constant at their nominal values is defined as the ‘base case’.  The main disadvantage of this

approach is that the conclusions that are derived are specific to the base-case scenario.

Furthermore, sensitivity is assessed on individual parameters without regard to the combined

variability resulting from considering all input parameters simultaneously.



Soil Survey and Land Research Centre

21

The parameters can be changed either by a constant percentage (local sensitivity analysis) or

by a factor of their standard deviation (this approach takes into account parameter variability).

In this study, it was considered that larger benefits would be gained by varying the parameters

within a range defined by their uncertainty.  Hence, the present study can be considered as a

first-step uncertainty analysis where variation of the parameters was attributed by expert

knowledge.

2.3.2 Derivation of variation range of input parameters

Variation ranges were attributed to input parameters using expert judgement only.  The

derivation of variation ranges from literature review or experimental data was outside the

scope of this study.  Range of variation for each parameter was discussed between three

experienced modellers until consensus was achieved for all parameters.

Parameters which are traditionally determined through experimental measurements were

varied symmetrically (i.e. same variation for increase and decrease of the parameter).

Parameters related to sorption and degradation were considered as relatively uncertain.  For

most of them, it was considered that a reasonable range of variation was obtained by

multiplying and dividing the average value by a factor of 2.  Parameters that cannot be

determined experimentally were varied according to expert judgement.  Where appropriate,

model authors were contacted to discuss particular parameter variations.  Finally, parameters

that are highly uncertain were varied by a factor of 10 or more.  Attention was paid to vary the

parameters in the same way between models to enable a direct comparison of results.

2.2.3 Treatment of modelling results

Assume that an input parameter I has been varied from its base-case value IBC and that in

response to this variation, the model has produced an output value O that is different from the

base-case value for the output OBC.

The variation in the input parameter can be expressed as:

Input variation in % = (I-IBC)/IBC*100

Similarly, the variation in the output parameter can be expressed as:

Output variation in % = (O-OBC)/OBC*100
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The plotting of the output variation vs. the input variation provides a graphical means to

assess the sensitivity of the model to input parameters.  The closer the curve to the Y axis (the

larger the slope of the line linking the origin and a particular point), the more sensitive to this

parameter the model is.  In the same way, the closer the curve to the X axis (the smaller the

slope of the line linking the origin and a particular point), the less sensitive to this parameter

the model is.

Numerically, a ratio of variation (ROV) can be defined as follows:

ROV = Output variation / Input variation

Or, ROV= ([O-OBC]/[ I-IBC]) * (IBC/OBC)

This variation can be either positive or negative.  It takes negative values if a decrease in an

input parameter results in an increase in the output value or if an increase in an input

parameter results in a decrease in the output value.  The sign of the ratio is not critical when

the aim is to classify the input parameters by their influence on model output.  Hence, the

absolute value of ROV (|ROV|) was considered for classification purposes.

It was decided to represent the influence of a particular input parameter by the maximum

absolute ratio of variation (MAROV), i.e. maximum slope of the lines linking the origin to

data points in the graph of output variation vs. input variation.

MAROV = Maxi |ROV|, i= 1 to r,

 where r is the number of model runs carried out for a particular parameter.

The larger the MAROV index, the more influence a parameter has on model output.  A

MAROV of 1 means that a variation in the model input of x% will result at maximum in the

same variation in the model output (x%).  If MAROV equals 10, the disturbance of a model

input will be propagated through the model and amplified to result in a maximum variation of

the output by 10 times more.  A conversion table for MAROV is presented in Table 9.
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MAROV value The variation in the input

by

results in a variation in the

output by

which represents a

multiplication factor

for the output of

0.01 10% (e.g. 100 to 110) 0.1% (e.g. 100 to 100.1) 1.001

0.25 10% (e.g. 100 to 110) 2.5 % (e.g. 100 to 102.5) 1.025

0.5 10% (e.g. 100 to 110) 5 % (e.g. 100 to 105) 1.05

1 10% (e.g. 100 to 110) 10 % (e.g. 100 to 110) 1.1

2 10% (e.g. 100 to 110) 20 % (e.g. 100 to 120) 1.2

5 10% (e.g. 100 to 110) 50 % (e.g. 100 to 150) 1.5

10 10% (e.g. 100 to 110) 100 % (e.g. 100 to 200) 2

90 10% (e.g. 100 to 110) 900 % (e.g. 100 to 1000) 10

990 10% (e.g. 100 to 110) 9900 % (e.g. 100 to 10000) 100

9990 10% (e.g. 100 to 110) 99900 % (e.g. 100 to 100000) 1000

Table 9.  Variations in the output for different MAROV values

Since MAROV values can be highly dependent on a single data point, it is very important not

to consider the MAROV values per se.  Instead, the most important feature is the ranking of

parameters.  Additionally, the information is presented by classifying the parameters into

sensitivity classes (Table 10).  Although this classification is rather subjective, it enables an

easy presentation and understanding of the results (Figure 1).

The reason for using three different ways of presenting the results (charts presenting variation

in output vs. variation in input, MAROV values and parameter ranking) is that data

presentation format has been shown to influence perceived model sensitivity (Ferreira et al.,

1995).  The presentation of the same data by different representations is likely to benefit the

use of information generated by sensitivity analysis.

MAROV values Classification of parameters

>10 Extremely  sensitive

1-10 Very sensitive

0.1-1 Moderately sensitive

0.01-0.1 Slightly sensitive

0-0.01 Insensitive

Table 10.  Classification of the sensitivity of parameters according to their MAROV values
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Figure 1.  Graphical representation of MAROV values and the classes of sensitivity

The chart represents output variation (y axis)  vs. input variation (x axis)

Classes of sensitivity are defined by lines which correspond to particular values of MAROV.

The line in the graphic represents the data for an input parameter which is “moderately sensitive”

The definition of the MAROV index might not be robust in some particular cases where the

curves strongly deviate from linearity.  This is exemplified in Figure 2a and 2b.

In Figure 2a, the MAROV index will be identical whichever the range of variation of the

input parameter.  In contrast, the MAROV index will be dependent on the range of variation

for parameters which exhibit shapes similar to that presented in Figure 2b.  In this particular

case, the MAROV index will be the slope of the line joining the origin and point 4 (i.e. the

largest slope for the four points).  Non-linearity of the sensitivity curve might lead to an

overestimation of sensitivity by the MAROV index under particular circumstances.

Confidence in the ranking of parameters using the MAROV index can be gained by

examining MAROV indices and sensitivity charts together.

Extremely sensitive Slightly sensitive

Very sensitive Insensitive

Moderately sensitive
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Figure 2.  Charts explaining the derivation of the MAROV index from sensitivity curves

y-axis: variation in model output; x-axis: variation in model input

MAROV is defined as the steepest slope of the lines joining the origin and the different points

2.4. MONTE CARLO SENSITIVITY ANALYSIS

In contrast to one-at-a-time sensitivity analysis where parameters are varied one after the

other, the Monte Carlo approach considers the variation of all input parameters at the same

time.  Values of input parameters are randomly selected in probability distribution functions

describing the variability in input parameters.

2.4.1 Approach

A sensitivity analysis based on random sampling techniques includes the following steps:

- defining the model and its dependent and independent variables;

- assigning probability distribution functions to each input parameter;

- generating an input matrix through an appropriate random sampling method;

- running the model as many times as required to produce an output vector;

- assessing the influences and relative importance of each input/output relationship.

Although it is possible to specify correlations between different input parameters for the

generation of probability distribution functions, this option was not used here since the

information necessary to derive sound correlations between parameters was not readily

available.  Some relationships were nevertheless used, but outside the Monte Carlo sampling

procedure.  Values of parameters for the subsoil were linked to parameters in the topsoil.

a
b
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Model results were related to input parameters by standardised regression analysis.  This

appears to be the most comprehensive technique for investigating model sensitivity and is

relatively easy to perform with commercially available software (Hamby, 1994).

2.4.2 Attribution of probability distribution functions

Probability distribution functions (pdf’s) were assigned according to the best estimates of the

authors on the variation that would be expected for a particular parameter.  For parameters

that are measured in an unambiguous way, a symmetrical normal probability distribution was

retained.  Uncertain parameters which were attributed a variation factor of 2 in the sensitivity

analysis were considered to be log-normally distributed.  Finally, uniform distributions were

attributed to a small number of parameters.

2.4.3 Statistical sampling

The traditional approach, referred to as “Monte Carlo”, consists in sampling values purely

randomly in the pdf’s of input parameters.  This usually implies a large number (> 10,000) of

model runs and the approach is therefore extremely demanding for complex models with large

running times (e.g. 10,000 simulations with a model which has a running time of 1 hour

would keep a computer busy for more than one year).

The problem with the large number of runs that have to be carried out with the traditional

Monte Carlo sampling has been addressed by McKay et al. (1979) who proposed a stratified

random sampling scheme termed Latin Hypercube Sampling (LHS).  In LHS, each

probability distribution is divided into segments of equal area under the probability

distribution function.  Segments from each parameter distribution are sampled without

replacement so that a segment is used in only one model run.  For iteration, a parameter value

is randomly selected from the randomly selected segment.  Since all the segments of a

parameter distribution contain equal area, the parameter can be sampled from a uniform

distribution bounded by the limits of a segment.  Also, the random sampling in most of the

non-uniform distributions will often provide parameter values close to their means when

using standard Monte Carlo sampling (Reed et al., 1984).  A more evenly distributed random

sampling is obtained with LHS.



Soil Survey and Land Research Centre

27

Rose (1983) showed that simple random sampling of 1000 runs and LHS of 200 runs provide

similar results for a variety of statistical measures.  Iman and Helton (1985) indicate that

satisfactory results with LHS can be obtained by applying the following formula:

N > 4/3 × p, where p is the number of parameters to be sampled.

The maximum number of parameters to be varied in the four leaching models was 43 (number

of primary parameters for MACRO).  Using this equation, the minimum number of runs to be

carried out was thus 58 runs.  It was decided to conduct 250 runs for all four models to

improve confidence in the results.

2.4.4 Treatment of model results

Sensitivity of the models to changes in input parameters for Monte Carlo sampling was

assessed using regression techniques.  The principle of the technique is that the sensitivity of

the model is proportional to the magnitude of regression coefficients (i.e. the larger the

regression coefficient, the larger the sensitivity of the model to this particular parameter).

In a first stage, inputs and outputs were normalised because of unit discrepancies between

parameters and the relative magnitude of parameters themselves.  Regression coefficients

obtained on this normalised data are often referred to as Standardised Regression Coefficients

(SRC).  The model of regression can be written as follows:

εβ +×= ∑
i

ii sinputsoutput __

where output_s is the standardised output,

input_si is the standardised input,

βi is the Standardised Regression Coefficient,

i is a coefficient describing the parameters,

ε is the model error.

All terms of this equation are dimensionless.

One of the assumptions made when calculating regression statistics from the raw data is that

the relationship between input and output is linear.  This hypothesis is clearly not valid for

complex models such as those describing leaching of pesticides.  In order to reduce the impact

of non-linearity, all data were replaced by their rank in the dataset (i.e. the largest value for a

particular parameter was assigned the number 1, the second largest the number 2, etc.).  This

transformation is valid for our dataset because the relationship between input and output was

shown to be monotonous in the one-at-a-time sensitivity analysis.  The Rank Regression



Soil Survey and Land Research Centre

28

Coefficients (RRC) or Standardised Rank Regression Coefficients (SRRC) were calculated by

performing a regression analysis on rank-transformed standardised data rather than the raw

standardised data.  The model can be written:

'sinputrankedsoutputranked
i

ii εβ +×= ∑ ____

where ranked_output_s is the rank-transformed standardised output,

input_si is the rank-transformed standardised input,

βi is the Standardised Rank Regression Coefficient,

i is a coefficient describing the parameters,

ε’ is the model error.
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3. RESULTS

Preliminary note: key for the designation of model runs

In the following sections, scenarios are described using three letters (e.g. MTH, OLW, ZLH,

ALW)

The first letter designates the model (M=MACRO, O=PELMO, Z=PRZM,

A=PESTLA),

The second letter designates the pesticide (L  or T),

The third letter designates the soil (W=Wick, H=Hodnet).

3.1 MACRO 4.1

3.1.1 Results for the four scenarios (the four “base-cases”)

The four base-cases resulted from modelling the fate of the two pesticides with contrasting

properties in the two contrasting soil types.  Percolation and pesticide losses for the four

scenarios are presented in Table 11 (annual data) and Table 12 (accumulated values).

Predicted percolation for the two soils was very similar (annual difference of 12 mm in the

prediction of percolation volumes).  Total pesticide losses were predicted to range from 33.8

to 39.8 g/ha (Pesticide L) and from 7.5 to 87.3 g/ha (Pesticide T).  Predicted losses for both

pesticides were larger in the clay loam (Hodnet) than in the sandy loam (Wick), especially for

pesticide T (87.3 g/ha compared to 7.5 g/ha, respectively).  This reflects greater leaching by

preferential flow in the more highly structured Hodnet soil.  In the Wick soil, losses of

pesticide L were predicted to be larger than those of pesticide T.  In the Hodnet soil, the

reverse was predicted.  This highlights the complex interactions between the molecule and the

soil environment and, again, the influence of considering preferential flow processes in

leaching modelling.

Percolation (mm) Pesticide losses at 1-m depth (g/ha)

MLW MTW MLH MTH MLW MTW MLH MTH

1985 242 242 230 230 0.02 <0.01 23.87 51.06

1986 283 283 271 271 29.80 1.45 15.83 33.61

1987 283 283 271 271 3.99 4.10 0.11 2.47

1988 286 286 273 273 0.01 1.60 <0.01 0.15

1989 - 283 - - - 0.32 - -

1990 - 283 - - - 0.05 - -

Table 11.  Annual percolation and cumulated pesticide losses predicted by MACRO for the four scenarios
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MLW MTW MLH MTH

Number of years to achieve full breakthrough 4 6 4 4

Total percolation (mm) 1094 1660 1045 1045

Total pesticide losses at 1-m depth (g/ha) 33.82 7.52 39.80 87.29

Total pesticide losses at 1-m depth (% applied) 1.69 0.38 1.99 4.36

Table 12.  Accumulated percolation and pesticide losses predicted by MACRO for the four scenarios

Figure 3 presents daily pesticide losses predicted by the MACRO model for each scenario.

Leaching breakthrough was dependent on the soil considered.  In the Wick soil (scenarios

MLW and MTW), losses by percolation occurred over relatively long time periods (e.g. over

7.5 and 5 months for the two events of the scenario MLW).  Leaching happened over 2 years

for pesticide L and 4 years for pesticide T.  In contrast, pesticide losses from the more

structured Hodnet soil were short-lived and dominated by transient peaks in a single year with

much larger daily losses.  Maximum daily losses were 10 and 209 times larger in the clay

loam than in the sandy loam for pesticide L and T, respectively.  Transient losses are typical

of soils with preferential flow.
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Figure 3.  Daily pesticide losses predicted by MACRO for the four scenarios (g/ha)
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3.1.2 Results for the one-at-a-time sensitivity analysis

A total of 1426 runs were carried out to assess the one-at-a-time sensitivity of MACRO to the

43 primary parameters for the four scenarios.

The results of the influence of input parameters on the prediction of percolation and pesticide

losses are presented graphically in Appendices 8 to 15.  Examples of charts for the MLW

scenario are presented in Figures 4 and 5.  These charts present the variation in the model

output (either percolation or pesticide losses) vs. the variation in the input.  Values on the two

axes are percentages, which mean that direct comparison of the influence of the different

parameters can be made.  The closer the curve to the Y-axis, the more influence a particular

parameter has.  Parameters which have a curve located in the top right or bottom left

quadrants have a “positive” influence on model results (i.e. an increase in the value of the

input will result in an increase in the value of the output).  In contrast, an increase in the

values of input parameters which have a curve in the top left or bottom right quadrants will

result in a decrease in the model output (“negative” influence).
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Figure 4.  Influence of the variation of input parameters on percolation predicted by MACRO

for the MLW (Pesticide L on Wick) scenario
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 Figure 5.  Influence of the variation of input parameters on pesticide losses predicted by MACRO

for the MLW (Pesticide L on Wick) scenario

For comparison and classification purposes, the sensitivity of the model to individual

parameters was also quantified using the MAROV index.  MAROV values for individual

scenarios are reported in Appendices 16 to 23.  Results aggregated for all scenarios are

reported in Table 13 for percolation and in Table 14 for pesticide losses.  In these two tables,

parameters are classified according to the mean MAROV for the four scenarios for each

parameter.  Parameters which have the most influence on prediction of percolation and

pesticide losses (larger MAROV values) can be found at the top of the tables.
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Wick Hodnet
Pesticide L Pesticide T Pesticide L Pesticide T Influence

XMPOR Boundary soil water content 0.728 - 0.728 - 0.856 - 0.856 - -
RPIN Root distribution 0.274 + 0.274 + 0.371 + 0.371 + +
THETAINI Initial soil moisture 0.181 + 0.181 + 0.320 + 0.320 + +
ROOTMAX Max root depth 0.226 - 0.226 - 0.280 - 0.280 - -
WILT Wilting point 0.153 + 0.153 + 0.300 + 0.300 + +
TPORV Saturated water content 0.034 - 0.034 - 0.236 - 0.236 - -
ZALP Correction factor for wet canopy

evaporation
0.122 - 0.122 - 0.133 - 0.133 - -

CTEN Boundary soil water tension 0.113 - 0.113 - 0.095 - 0.095 - -
ZLAMB Pore size distribution index 0.114 + 0.114 + 0.054 +/- 0.054 +/- +/-
BETA Root adaptability factor 0.033 + 0.033 + 0.054 + 0.054 + +
ZN Pore size distribution factor macrop. 0.014 - 0.014 - 0.049 - 0.049 - -
GAMMA Bulk density 0.012 - 0.012 - 0.021 - 0.021 - +/-
KSM Boundary hydraulic conductivity 0.042 + 0.042 + 0.005 +/- 0.005 +/- +/-
LAIMAX Max Leaf Area Index 0.011 - 0.011 - 0.018 - 0.018 - -
KSATMIN Saturated hydraulic conductivity 0.004 + 0.004 + 0.015 + 0.015 + +
WATEN Critical water tension for root water

uptake
0.013 - 0.013 - 0.005 - 0.005 - -

RINTEN Rainfall intensity 0.009 + 0.009 + 0.007 + 0.007 + +
ZM Tortuosity factor micropores 0.008 + 0.008 + 0.005 + 0.005 + +
CFORM Form factor 0.002 + 0.002 + 0.004 + 0.004 + +
ROOTINIT Root Depth at zdatemin 0.003 - 0.003 - 0.003 - 0.003 - -
CANCAP Canopy Interception Capacity 0.003 - 0.003 - 0.002 - 0.002 - -
ASCALE Effective diffusion pathlength 0.002 - 0.002 - 0.002 - 0.002 - -
LAIMIN Leaf Area Index at zdatemin 0.001 - 0.001 - 0.002 - 0.002 - -
CRITAIR Critical soil air content for root water

uptake
0 0 0.001 + 0.001 + +

ZFINT Fraction of irrigation intercepted by
canopy

0 0 0 0

ANNAMP Temp annual amplitude 0 0 0 0
ANNTAV Average annual temp 0 0 0 0
TEMPINI Initial soil temp 0 0 0 0
DIFF Diffusion coefficient in water 0 0 0 0
DV Dispersivity 0 0 0 0
ZMIX Mixing depth 0 0 0 0
CANDEG Canopy degradation rate 0 0 0 0
DEG Degradation rates 0 0 0 0
EXPB Exponent moisture relation 0 0 0 0
FEXT Canopy wash-off coefficient 0 0 0 0
FRACMAC Fraction sorption sites macropores 0 0 0 0
FREUND Freundlich exponent 0 0 0 0
TRESP Exponent Temp response 0 0 0 0
ZKD Sorption coefficient 0 0 0 0
DFORM Form factor 0 0 0 0
LAIHAR Leaf Area Index at harvest 0 0 0 0
ZHMIN Crop height at zdatemin 0 0 0 0

Table 13.  Classification of MACRO parameters according to their influence on percolation
 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter
will result in an increase in percolation and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Extremely sensitive

Very sensitive

Moderately sensitive

Slightly sensitive

Insensitive
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Wick Hodnet
Pesticide L Pesticide T Pesticide L Pesticide T Influence

FREUND Freundlich exponent 4.552 + 22.21 + 1.348 + 2.070 + +
DEG Degradation rates 8.157 - 11.94 - 3.097 - 1.218 - -
ZKD Sorption coefficient 4.496 - 12.13 - 0.242 - 0.633 - -
TPORV Saturated water content 0.524 - 5.895 - 2.696 - 6.675 - -
KSM Boundary hydraulic conductivity 0.389 +/- 7.000 - 1.247 - 1.619 - +/-
TRESP Exponent Temp response 3.488 + 3.369 + 1.765 + 0.722 + +
ZN Pore size distribution factor macrop. 0.131 - 5.615 - 0.818 - 2.739 - -
XMPOR Boundary soil water content 2.469 - 0.948 + 0.938 + 2.273 + +/-
GAMMA Bulk density 2.363 - 3.680 - 0.067 - 0.448 - -
ANNTAV Average annual temp 1.823 - 2.231 - 0.597 - 0.406 - -
ASCALE Effective diffusion pathlength 0.247 - 0.873 + 0.692 + 1.504 + +/-
ZLAMB Pore size distribution index 0.829 + 1.450 - 0.456 - 0.341 - +/-
KSATMIN Saturated hydraulic conductivity 0.147 +/- 0.631 + 0.267 + 0.549 + +/-
EXPB Exponent moisture relation 0.507 + 0.855 + 0.056 + 0.034 +/- +/-
RINTEN Rainfall intensity 0.232 - 0.950 + 0.091 +/- 0.124 + +/-
CTEN Boundary soil water tension 0.085 +/- 0.868 - 0.069 +/- 0.272 - +/-
ANNAMP Temp annual amplitude 0.568 + 0.362 + 0.222 + 0.128 + +
DIFF Diffusion coefficient in water 0.019 + 0.067 - 0.302 - 0.826 - +/-
ROOTMAX Max root depth 0.188 +/- 0.336 + 0.366 - 0.290 - +/-
RPIN Root distribution 0.157 - 0.414 - 0.322 + 0.211 + +/-
WILT Wilting point 0.125 - 0.248 - 0.363 + 0.255 + +/-
ZALP Correction factor for wet canopy

evaporation
0.276 - 0.293 - 0.101 - 0.146 - -

FRACMAC Fraction sorption sites macropores 0.023 + 0.481 - 0.043 + 0.245 - +/-
ZFINT Fraction of irrigation intercepted by

canopy
0.193 - 0.165 - 0.104 - 0.067 - -

ZMIX Mixing depth 0.082 + 0.218 + 0.026 +/- 0.137 + +/-
CANCAP Canopy Interception Capacity 0.183 +/- 0.126 +/- 0.126 +/- 0.029 +/- +/-
WATEN Critical water tension for root water

uptake
0.132 +/- 0.080 +/- 0.136 +/- 0.065 +/- +/-

BETA Root adaptability factor 0.132 +/- 0.119 - 0.112 + 0.038 +/- +/-
THETAINI Initial soil moisture 0.085 +/- 0.141 +/- 0.152 +/- 0.012 +/- +/-
ZM Tortuosity factor micropores 0.113 +/- 0.112 +/- 0.065 +/- 0.023 +/- +/-
CANDEG Canopy deg rate 0.070 - 0.062 - 0.122 - 0.052 - -
LAIMIN Leaf Area Index at zdatemin 0.079 +/- 0.111 +/- 0.051 +/- 0.022 - +/-
ROOTINIT Root Depth at zdatemin 0.056 +/- 0.087 +/- 0.064 +/- 0.051 +/- +/-
DV Dispersivity 0.134 + 0.050 - 0.007 +/- 0.053 - +/-
LAIMAX Max Leaf Area Index 0.092 +/- 0.053 +/- 0.037 +/- 0.041 +/- +/-
CFORM Form factor 0.050 +/- 0.064 +/- 0.054 +/- 0.035 +/- +/-
FEXT Canopy wash-off coefficient 0.026 + 0.054 + 0.029 + 0.046 + +
CRITAIR Critical soil air for root water uptake 0 0 0.092 +/- 0.033 +/- +/-
TEMPINI Initial soil temp 0 0 0 0
DFORM Form factor 0 0 0 0
LAIHAR Leaf Area Index at harvest 0 0 0 0
ZHMIN Crop height at zdatemin 0 0 0 0

Table 14.  Classification of MACRO parameters according to their influence on pesticide losses
 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter
will result in an increase in pesticide losses and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Extremely sensitive

Very sensitive

Moderately sensitive

Slightly sensitive

Insensitive
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The sensitivity of percolation to input parameters in MACRO is presented in Table 13.
Maximum MAROV values for percolation were all below 1 (maximum 0.86), which means

that a particular variation in an input would result in a smaller variation in the predicted

percolation.  No notable difference was found in the ranking of parameters between the four

scenarios.

The parameter which had the most influence on percolation volumes was XMPOR, the

boundary soil water content.  This parameter is one the three parameters (CTEN, XMPOR

and KSM) which define the boundary between micropores and macropores in MACRO.  In

this study, these three parameters were varied independently, but as the three parameters are

numerically linked, a refinement of the study could include a variation of the three parameters

at the same time.

Parameters related to the description of soil water content (THETAINI, WILT, XMPOR and

TPORV) were found to have a small influence on percolation results (maximum MAROV

value 0.32).  The use of water retention data specific to the soil used is desirable to achieve a

good description of water flow processes in soil.  Also, the influence of the initial soil

moisture content (THETAINI) emphasises that a pre-run of a few months or years should be

carried out to allow equilibration of the model with respect to water content in the soil profile.

Two crop parameters were listed in the five most influential parameters for percolation:

RPIN, the root distribution percentage and ROOTMAX, the maximum rooting depth, which

are two parameters related to the description of the root system of the crop.  RPIN represents

the percentage of root length in the top 25% of the root depth.  Variation of other crop

parameters were found to have little effect on percolation results.

No meteorological data were included in the sensitivity analysis because these parameters

were considered as certain within the scope of this study.  This is not the case in practice since

there is evidence of large measurements errors in meteorological datasets.  Potential

evapotranspiration (PET) is uncertain because different values are produced by different

methods or different individuals.  Given the small magnitude of MAROV values found for

percolation, the balance of PET minus rainfall is expected to be the most influential variable

for percolation predictions.

The influence of a change in model input on model output was occasionally dependent on the

values which were selected within a scenario (+/- signs in Table 13).  For instance, an
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increase by 5% in the bulk density GAMMA resulted in a decrease in percolation volumes

whereas an increase by 10% resulted in an increase in percolation.

The sensitivity of pesticide losses to input parameters in MACRO is presented in Table 14

and the 15 most influential parameters by scenario are reported in Table 15.

MLW MTW MLH MTH

1 DEG 8.157 FREUND 22.211 DEG 3.097 TPORV 6.675

2 FREUND 4.552 ZKD 12.129 TPORV 2.696 ZN 2.739

3 ZKD 4.496 DEG 11.942 TRESP 1.765 XMPOR 2.273

4 TRESP 3.488 KSM 7.000 FREUND 1.348 FREUND 2.070

5 XMPOR 2.469 TPORV 5.895 KSM 1.247 KSM 1.619

6 GAMMA 2.363 ZN 5.615 XMPOR 0.938 ASCALE 1.504

7 ANNTAV 1.823 GAMMA 3.680 ZN 0.818 DEG 1.218

8 ZLAMB 0.829 TRESP 3.369 ASCALE 0.692 DIFF 0.826

9 ANNAMP 0.568 ANNTAV 2.231 ANNTAV 0.597 TRESP 0.722

10 TPORV 0.524 ZLAMB 1.450 ZLAMB 0.456 ZKD 0.633

11 EXPB 0.507 RINTEN 0.950 ROOTMAX 0.366 KSATMIN 0.549

12 KSM 0.389 XMPOR 0.948 WILT 0.363 GAMMA 0.448

13 ZALP 0.276 ASCALE 0.873 RPIN 0.322 ANNTAV 0.406

14 ASCALE 0.247 CTEN 0.868 DIFF 0.302 ZLAMB 0.341

15 RINTEN 0.232 EXPB 0.855 KSATMIN 0.267 ROOTMAX 0.290

Table 15.  The 15 most influential parameters on the prediction of pesticide losses

 by MACRO for the four scenarios (classification by MAROV values).

Maximum MAROV values for pesticide losses ranged from 3.1 (Pesticide L on Hodnet soil)

to 22.2 (Pesticide T on Wick soil).  The ranking of the most influential parameters was found

to be influenced by both the soil type and the compound, and large differences were found.

For example, ZN, the pore size distribution index was found to be the second most influential

parameter in the MTH scenario whereas it was ranked 24th in the MLW scenario.

In the Wick soil which is coarser textured and more weakly structured than the Hodnet soil,

MACRO was most sensitive to three parameters related to the degradation (degradation rates)

or sorption (Freundlich coefficient and exponent) of pesticides.  The  importance of these

parameters was particularly great for pesticide T where the parameters had MAROV values

above 10 (a value of 10 means that an increase of 10% in the input parameter will double the

value of the output).  Following these three dominant parameters (and TRESP, the parameter

which describes the influence of temperature on degradation kinetics, for the MLW scenario),

the next most influential inputs were related to the description of the soil hydrology and the

soil (KSM, XMPOR, ZN, GAMMA).
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Sensitivities of pesticide losses predicted by MACRO in the Hodnet soil were less than those

reported for the Wick soil for both pesticides.  In the Hodnet soil, the MACRO model was

much more influenced by hydrological parameters than was shown for the Wick soil, even if

parameters related to degradation and sorption still dominated in the scenario with pesticide

L. TPORV (the water content at saturation) was the most and second most influential

parameter for the MTH and MLH scenarios, respectively.  In the scenario with pesticide T,

five out of the six top parameters were hydrological parameters.  The second most influential

parameter (ZN, tortuosity factor for the macropores) of the MTH scenario is particularly

uncertain because it cannot be determined experimentally and very little guidance is available;

this might lead to large discrepancies in model results from different users.  The presence of

the diffusion coefficient in water (DIFF) in the top 10 parameters is also specific to the MTH

scenario.  Although the sorption coefficient was found to greatly influence results for

pesticide losses in the Wick soil (ranked 2 and 3), its influence was much less pronounced in

the Hodnet soil (ranked 10 and 16).

The impact of a change in some inputs resulted in either a decrease or an increase in pesticide

losses depending on the scenario considered (e.g. ASCALE, ZLAMB, Table 14) or the values

that were taken by a parameter within a scenario (e.g. CANCAP, WATEN, or most crop

parameters).  The change of influence was sometimes attributed to a specific compound (e.g.

FRACMAC) or to a specific soil (e.g. RPIN).  The fact that a change in the input has different

impacts on model results is due to the combination of different processes combined in the

model.

3.1.2 Results for the Monte Carlo sensitivity analysis

Input parameters obtained from sampling in the different probability distributions are

presented in Appendices 34 to 37.  A total of 250 runs were carried out.  Basic statistics on the

percolation and pesticide losses predicted by MACRO are presented in Table 16.  More

detailed statistics can be found in Appendices 38 to 47.

Percolation (mm) Pesticide losses (g/ha)

MLW MTW MLH MTH MLW MTW MLH MTH

Minimum 914 1384 776 872 0.0 0.0 1.5 0.1

Mean 1084 1643 1040 1039 58.5 24.1 44.6 93.8

Median 1084 1647 1042 1045 38.8 10.9 37.5 79.4

Maximum 1291 1970 1209 1222 336.0 249.2 128.0 275.7

CV (%) 6.1 5.7 7.2 6.9 100 149 61 69

Table 16.  Basic statistics on MACRO predictions for the four scenarios

using input parameters generated by Monte Carlo sampling
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Regression techniques were used for non-transformed standardised data and transformed

(ranked) standardised data (see section 2.4.4).  Coefficients of determination related to

pesticide losses for the transformed data (r2 0.92-0.95) were significantly larger than those for

non-transformed data (r2 0.68-0.90) because of the non-linearity inherent in the computation

of pesticide losses by MACRO.  It was therefore decided to restrict the analysis of the

sensitivity of the model to Standardised Rank Regression Coefficients (SRRC).  Results of the

regressions are presented in Table 17 for percolation and Table 18 for pesticide losses.  The

larger the absolute values of the regression coefficients (SRRC) the more influence the

parameter has.  An increase in a parameter with a positive coefficient will result in an increase

in the model output and vice versa.
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MLW MTW MLH MTH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

XMPOR -0.579 1 -0.494 1 -0.473 2 -0.500 2

ROOTMAX -0.415 2 -0.442 2 -0.409 3 -0.413 3

THETAINI 0.307 5 0.228 5 0.481 1 0.506 1

CTEN -0.373 3 -0.372 3 -0.240 5 -0.253 5

RPIN 0.242 6 0.224 6 0.265 4 0.260 4

WILT 0.118 9 0.117 9 0.159 6 0.204 6

BETA 0.091 10 0.149 7 0.152 7 0.173 7

ZLAMB 0.309 4 0.330 4 -0.075 12 -0.063 12

ZALP -0.167 7 -0.140 8 -0.136 8 -0.135 9

CANCAP -0.050 11 -0.047 13 -0.079 11 -0.028 17

ZM 0.028 21 0.043 14 0.060 13 0.040 15

TPORV 0.008 34 -0.039 16 -0.130 9 -0.146 8

FREUND 0.037 15 0.062 11 -0.012 33 0.016 25

KSM 0.132 8 0.086 10 0.016 28 -0.002 41

WATEN 0.016 26 -0.025 20 -0.012 32 -0.074 11

ANNAMP -0.043 12 0.020 26 0.020 26 -0.015 27

CANDEG 0.036 17 -0.017 32 -0.028 23 -0.024 19

ZN 0.009 33 -0.005 40 -0.084 10 -0.089 10

LAIMIN 0.016 27 -0.013 35 -0.037 19 -0.050 13

RINTEN 0.000 43 0.055 12 0.032 20 0.023 20

DV -0.035 18 -0.024 21 0.038 17 0.002 42

LAIMAX -0.016 28 0.020 28 -0.054 14 -0.014 29

CFORM 0.028 22 0.033 17 0.025 24 -0.009 37

DFORM -0.013 30 0.024 22 -0.037 18 -0.011 30

FEXT -0.038 13 0.016 33 -0.030 22 0.010 33

ASCALE -0.014 29 0.040 15 -0.005 39 0.022 21

ZFINT -0.037 16 0.018 30 -0.045 15 -0.001 43

DIFF 0.000 42 -0.026 19 0.013 30 -0.044 14

CRITAIR 0.002 40 -0.019 29 0.043 16 0.018 23

ROOTINIT -0.033 19 -0.021 24 -0.004 40 0.015 28

EXPB -0.018 24 0.021 25 -0.009 37 0.015 26

FSTAR -0.002 39 -0.029 18 -0.031 21 0.009 36

KSATMIN 0.012 31 0.011 36 0.015 29 0.028 18

FRACMAC -0.025 23 0.001 43 0.016 27 0.016 24

ZKD 0.037 14 -0.020 27 -0.003 41 -0.009 35

ZMIX 0.004 35 0.017 31 -0.003 42 -0.032 16

ZHMIN 0.012 32 -0.023 23 0.005 38 -0.010 34

DEG 0.002 38 0.001 42 0.012 31 0.021 22

TEMPINI 0.001 41 -0.010 37 0.024 25 0.010 31

GAMMA 0.017 25 -0.005 41 -0.011 35 0.006 38

LAIHAR -0.032 20 -0.009 38 0.002 43 -0.004 39

TRESP 0.004 36 0.006 39 -0.010 36 -0.010 32

ANNTAV 0.003 37 -0.015 34 -0.011 34 0.003 40

Table 17.  Classification of MACRO input parameters according to their influence

on results for percolation (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients
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MLW MTW MLH MTH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

DEG -0.648 1 -0.479 3 -0.730 1 -0.286 4

FREUND 0.292 3 0.523 1 0.170 6 0.261 5

TRESP 0.287 4 0.182 6 0.331 2 0.110 10

ZKD -0.483 2 -0.484 2 -0.092 11 -0.214 7

KSM 0.030 15 -0.210 4 -0.268 3 -0.345 2

ZLAMB 0.104 6 -0.097 8 -0.162 8 -0.131 9

ZN -0.022 21 -0.210 5 -0.208 4 -0.294 3

ANNTAV -0.144 5 -0.110 7 -0.114 9 -0.032 22

ASCALE -0.013 28 0.082 9 0.179 5 0.463 1

KSATMIN -0.019 22 0.075 11 0.059 12 0.081 14

TPORV -0.008 34 -0.057 16 -0.167 7 -0.205 8

XMPOR -0.048 10 0.020 28 0.051 13 0.081 15

RINTEN -0.024 18 0.071 12 -0.006 35 0.089 12

FRACMAC 0.014 27 -0.066 14 -0.018 26 -0.099 11

EXPB 0.055 8 0.082 10 0.005 38 0.028 24

GAMMA -0.036 12 -0.068 13 -0.006 36 -0.035 21

CTEN -0.004 39 -0.051 17 -0.050 15 -0.082 13

ZFINT -0.047 11 -0.026 27 0.014 29 -0.053 17

ZMIX -0.034 14 -0.006 36 -0.020 24 0.060 16

DIFF 0.003 41 -0.007 34 -0.100 10 -0.235 6

FSTAR -0.060 7 0.033 22 0.013 30 0.003 41

CANCAP 0.026 17 0.001 42 0.021 23 0.048 18

DV -0.013 30 0.017 30 -0.020 25 -0.046 19

ANNAMP 0.022 20 -0.005 38 0.050 14 0.011 34

WILT -0.052 9 -0.006 35 -0.023 21 0.001 43

ZM -0.035 13 -0.003 39 -0.014 28 -0.020 28

ROOTINIT 0.006 35 0.063 15 0.008 34 0.021 27

CANDEG 0.005 37 0.036 21 -0.034 17 -0.004 38

DFORM 0.010 33 0.007 33 0.030 18 0.016 31

LAIMAX 0.006 36 -0.039 20 -0.004 39 -0.038 20

ZALP -0.013 29 0.050 18 -0.010 32 0.010 36

CFORM -0.016 24 -0.018 29 0.009 33 0.017 30

LAIHAR -0.016 25 -0.040 19 0.000 43 -0.017 29

RPIN 0.011 32 -0.031 24 0.025 19 0.003 42

ZHMIN -0.023 19 -0.012 31 0.000 42 -0.024 26

THETAINI -0.027 16 -0.030 25 -0.001 41 0.009 37

ROOTMAX -0.003 40 0.007 32 -0.021 22 0.025 25

WATEN -0.016 23 0.005 37 -0.023 20 -0.004 39

LAIMIN 0.004 38 0.001 43 -0.042 16 -0.030 23

FEXT 0.001 43 0.031 23 0.014 27 0.012 33

TEMPINI -0.011 31 -0.026 26 -0.002 40 0.011 35

BETA -0.015 26 -0.002 41 0.006 37 -0.003 40

CRITAIR 0.002 42 -0.003 40 -0.011 31 0.013 32

Table 18.  Classification of MACRO input parameters according to their influence

on results for pesticide losses (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients



Soil Survey and Land Research Centre

41

Again, as for the one-at-a-time sensitivity analysis, the impact of changes in model input on

model output (i.e. the sign of SRRC in Tables 17 and 18) sometimes depended on the scenario

considered.  Although these differences are probably mostly genuine, they might also be

partly attributed to the approximation of the relationship between model input and output by a

regression analysis.  In contrast to the one-at-a-time sensitivity analysis where MACRO was

most sensitive to XMPOR in all four scenarios, the most influential parameters as determined

by Monte Carlo sensitivity analysis are XMPOR (scenarios with the Wick) and THETAINI

(scenarios with the Hodnet).  THETAINI is the soil moisture content at the beginning of the

modelling period and this influences the water regime in the first few days to few months of

the simulation.  For this reason, most modelling exercises are carried out with a few months

of simulation before the application of a product to allow for the equilibration of soil

moisture.  Using this particular approach, this parameter does not have any influence on flow

regime or pesticide losses once soil moisture is equilibrated across the profile.

Table 19 presents a list of the parameters that most influence pesticide losses predicted by

MACRO.  Again, as for the one-at-a-time sensitivity analysis, the model was most sensitive to

degradation and sorption parameters for the Wick scenarios.  For the scenario involving the

pesticide L in the Hodnet soil, predictions of pesticide losses were mostly influenced by

degradation parameters.  In contrast, pesticide losses were mainly governed by soil

hydrological parameters for the scenario involving pesticide T and the Hodnet soil.

MLW MTW MLH MTH

1 DEG -0.648 FREUND 0.523 DEG -0.730 ASCALE 0.463

2 ZKD -0.483 ZKD -0.484 TRESP 0.331 KSM -0.345

3 FREUND 0.292 DEG -0.479 KSM -0.268 ZN -0.294

4 TRESP 0.287 KSM -0.210 ZN -0.208 DEG -0.286

5 ANNTAV -0.144 ZN -0.210 ASCALE 0.179 FREUND 0.261

6 ZLAMB 0.104 TRESP 0.182 FREUND 0.170 DIFF -0.235

7 FSTAR* -0.060 ANNTAV -0.110 TPORV -0.167 ZKD -0.214

8 EXPB 0.055 ZLAMB -0.097 ZLAMB -0.162 TPORV -0.205

9 WILT -0.052 ASCALE 0.082 ANNTAV -0.114 ZLAMB -0.131

10 XMPOR -0.048 EXPB 0.082 DIFF -0.100 TRESP 0.110

11 ZFINT -0.047 KSATMIN 0.075 ZKD -0.092 FRACMAC -0.099

12 GAMMA -0.036 RINTEN 0.071 KSATMIN 0.059 RINTEN 0.089

13 ZM -0.035 GAMMA -0.068 XMPOR 0.051 CTEN -0.082

14 ZMIX -0.034 FRACMAC -0.066 ANNAMP 0.050 KSATMIN 0.081

15 KSM 0.030 ROOTINIT 0.063 CTEN -0.050 XMPOR 0.081

    *  FSTAR was not included in the one-at-a-time sensitivity analysis

Table 19.  The 15 most influential parameters on the prediction of pesticide losses

 by MACRO for the four scenarios (Monte Carlo sampling).

Parameters are classified according to Standardised Rank Regression Coefficients (SRRC).
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There were some significant differences in the lists of parameters generated by one-at-a-time

and Monte Carlo sensitivity analysis.  This is not surprising since the detailed results of a

sensitivity analysis depend on the method which is used.  Actual coefficients or a strict

adherence to sensitivity ranking are not as important as the determination of the top few

parameters to which the model is most sensitive (Hamby, 1994).

Sensitivity analysis techniques based on Monte Carlo sampling and regression analysis are

often recommended for investigating the sensitivity of models with a large number of

parameters because they are not very computer-intensive.  It is nevertheless felt that the

techniques carry a number of shortcomings.  For the current study, the main problem arose

from the use of regression techniques which cannot describe the relationship between model

output and inputs in, non linear, pesticide fate models (r2<1).  Regression coefficients were

therefore an inadequate description of this relationship and a comparison of these coefficients

is questionable.  A clear example is that the sign of some regression coefficients for

parameters which have little influence on model results change according to the different

scenarios (e.g. ZMIX or FEXT for the prediction of percolation, Appendix 56).  Furthermore,

the regression generated a coefficient for all input parameters, even those which were shown

to have no influence on model output in the one-at-a-time sensitivity analysis (e.g. percolation

results should not be affected by parameters related to sorption or degradation).  The

attribution of non-zero regression coefficients to parameters which do not have an influence

on model results obviously affected other parameters and the whole approach could therefore

be flawed.  A solution to this particular problem would be to only include those parameters

that have been shown to influence model results, but these techniques would lose some of

their advantages if a one-at-a-time sensitivity analysis had to be performed beforehand.

3.2 PELMO 3.00

3.2.1 Results for the four scenarios (the four “base-cases”)

Tables 20 and 21 present annual and cumulative percolation and losses of pesticides simulated

by PELMO for the four scenarios.  Predicted percolation was similar for the two scenarios

(annual difference 18 mm).  Total pesticide losses were predicted to be 25.7 g/ha for pesticide

L in the Wick soil, but much smaller for the other pesticide-soil combinations.  Virtually no

leaching was predicted for the fourth scenario (Pesticide T on Hodnet, total losses of  5.5×10-6

g/ha).  Losses were predicted to be larger for pesticide L compared to pesticide T.  Also, for a
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given molecule, predicted losses were larger in the sandy loam (Wick) than in the more

structured clay loam (Hodnet).  PELMO does not include a description of preferential flow.

Percolation (mm) Pesticide losses at 1-m depth (g/ha)

OLW OTW OLH OTH OLW OTW OLH OTH

1985 242 242 224 224 <0.01 <0.01 <0.01 <0.01

1986 241 241 223 223 20.6 <0.01 0.15 <0.01

1987 241 241 223 223 5.17 <0.01 0.16 <0.01

1988 241 241 223 223 <0.01 0.02 <0.01 <0.01

1989 - 241 223 223 - 0.14 <0.01 <0.01

1990 - 241 223 223 - 0.06 <0.01 <0.01

1991 - 241 223 223 - 0.01 <0.01 <0.01

1992 - 241 - 223 - <0.01 - <0.01

1993 - 241 - 223 - <0.01 - <0.01

1994 - - - 223 - - - <0.01

Table 20.  Annual percolation and pesticide losses predicted by PELMO for the four scenarios

OLW OTW OLH OTH

Number of years 4 9 7 10

Total percolation (mm) 963 2166 1565 2235

Total pesticide losses at 1-m depth (g/ha) 25.7 0.23 0.31 1.11×10-7

Total pesticide losses at 1-m depth (% applied) 1.29 0.01 0.02 5.53×10-6

Table 21.  Accumulated percolation and pesticide losses predicted by PELMO

for the four scenarios

Figure 6 presents monthly pesticide losses predicted by PELMO for the four scenarios.  As

recharge at the bottom of the soil profile was only predicted to occur from December to April

every year, pesticide losses were limited to this period.  No major difference was noted in the

pesticide breakthrough between the two soils and the compounds.  Maximum monthly

pesticide loss was predicted to occur after different number of years for the different scenarios

(after 2 years for OLW, 4 years for OTW, 3 years for OLH and 5 years for OTH).
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Figure 6.  Monthly pesticide losses predicted by PELMO for the four scenarios (g/ha)

3.2.2 Results for the one-at-a-time sensitivity analysis

A total of 944 model runs was carried out to assess the one-at-a-time sensitivity analysis of

PELMO to the 18 primary parameters for the four scenarios.

The influence of variation of the parameters on recharge and pesticide losses predicted by

PELMO is presented graphically in Appendices 67 to 74 and numerically in Appendices 75 to

82.  Examples of charts obtained for Pesticide L in Wick soil are provided in Figures 7 and 8.

OLW OLH

OTW OTH
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Figure 7.  Influence of the variation of input parameters on recharge volumes predicted by PELMO

for the OLW (Pesticide L on Wick) scenario
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Figure 8.  Influence of the variation of input parameters on pesticide losses predicted by PELMO

for the OLW (Pesticide L on Wick) scenario
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Tables 22 and 23 provide summaries of the sensitivity of the model to changes in input

parameters for the four scenarios.

Wick Hodnet

Pesticide L Pesticide T Pesticide L Pesticide T Influence

WC-FC Water capacity – Field capacity 0.648 0.641 1.167 1.165 -

WP Wilting point 0.208 0.208 0.519 0.519 +

CINT Maximum interception storage 0.003 0.004 0.019 0.020 -

COVM Maximum soil cover 0.003 0.004 0.019 0.020 -

ANET Depth of evapotranspiration

computation

0 0 0 0

AMXD Maximum active rooting depth 0 0 0 0

UPTK Plant uptake efficiency factor 0 0 0 0

BUD Bulk density 0 0 0 0

PDRA Plant decay rate 0 0 0 0

FEXT Foliar extraction coefficient 0 0 0 0

HENR Henry’s constant 0 0 0 0

DEGR Degradation rate 0 0 0 0

QTEN Increase given a temperature

increase of 10°C

0 0 0 0

ASM Soil moisture during degradation 0 0 0 0

MEXP Exponent for moisture correction 0 0 0 0

KF Freundlich sorption coefficient 0 0 0 0

NF Freundlich exponent 0 0 0 0

Table 22.  Classification of PELMO parameters according to their influence on recharge

 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter

will result in an increase of recharge and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Extremely sensitive

Very sensitive

Moderately sensitive

Slightly sensitive

Insensitive
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Wick Hodnet

Pesticide L Pesticide T Pesticide L Pesticide T Influence

DEGR Degradation rate 12.345 197.923 110.485 16384.020 -

KF Freundlich sorption coefficient 7.536 274.312 34.477 14425.139 -

NF Freundlich exponent 6.746 167.301 36.750 6923.228 +

WC-FC Water capacity – Field capacity 10.342 37.750 67.764 450.205 -

QTEN Increase given a temperature

increase of 10°C

5.983 22.288 17.262 94.061 +

BUD Bulk density 4.147 23.175 8.129 46.539 -

ASM Soil moisture during degradation 3.002 12.230 7.319 31.998 +

MEXP Exponent for moisture correction 0.906 5.424 1.028 4.160 +

COVM Maximum soil cover 0.255 0.762 0.376 0.864 -

CINT Maximum interception storage 0.184 0.730 0.300 0.865 -

WP Wilting point 0.288 (-) 0.335 (-) 0.683 (-) 0.517 (+) -/+

AMXD Maximum active rooting depth 0.375 0.343 0.197 0.331 -

UPTK Plant uptake efficiency factor 0.061 0.375 0.059 0.355 -

FEXT Foliar extraction coefficient 0.021 0.046 0.033 0.046 +

PDRA Plant decay rate 0.026 0.038 0.033 0.039 -

HENR Henry’s constant 0.045 0 0.039 0 -

ANET Depth of evapotranspiration

computation

0 0 0 0

Table 23.  Classification of PELMO parameters according to their influence on pesticide losses

 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter

will result in an increase of pesticide losses and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Recharge volumes predicted by PELMO were only sensitive to parameters related to the soil

water content (i.e. field capacity, initial soil moisture content and wilting point) for all

scenarios.  Crop related parameters which were considered in this study (maximum

interception storage and maximum soil cover) had very little effect on predicted volumes of

recharge.  The sensitivity of recharge was approximately twice as large for the Hodnet

scenarios compared to the Wick scenarios.

In contrast to recharge, the prediction of pesticide losses was extremely sensitive

(MAROV>10) to some parameters.  The maximum MAROV value was >10,000 for the

Pesticide T on Hodnet scenario.  Such large sensitivities were dismissed on the basis of the

small pesticide loss predicted for this particular scenario.  It is likely that the sensitivity of

PELMO was related to some extent to the amount of pesticide loss that was predicted (the

Extremely sensitive

Very sensitive

Moderately sensitive

Slightly sensitive

Insensitive
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greater the loss, the less sensitive the model), although this was only verified within soil type

in this study (sensitivity for OLW < sensitivity for OTW and sensitivity for OLH < sensitivity

for OTH).  Although absolute values for MAROV can be discarded, the use of their ranking

remains valid.

Table 24 presents the PELMO parameters ranked by their influence on pesticide losses for the

four scenarios.  The very sensitive (MAROV>1) and extremely sensitive (MAROV>10)

parameters were identical for the four scenarios.  These included all parameters related to

degradation (degradation rates DEGR, the factor of increase in degradation when temperature

is increased by 10°C QTEN, the soil moisture during the incubation during degradation

studies ASM, and the exponent of the equation describing the influence of moisture on

degradation MEXP), all parameters related to sorption (the Freundlich exponent NF and the

Freundlich coefficient KF) and two soil parameters (the field capacity/initial soil moisture

content WC/FC and the bulk density BUD).

The four most influential parameters were degradation rates, the Freundlich coefficient and

exponent and the field capacity/initial soil moisture content.  Ranking of these parameters was

influenced by the properties of the pesticide.  Field capacity and initial soil moisture content

were the second most sensitive parameters for the scenarios involving pesticide L.  Some

modellers rely on pedotransfer functions or values for a group of soils (e.g. the Dutch Winand

Staring soil series) to determine field capacity.  Where available, the option of direct

measurement should be preferred because pedotransfer functions are only approximations and

the use of field capacity for soil groups is not soil-specific.  The definition of field capacity

with regard to its laboratory determination is not universal and discrepancies exist between

countries.  In Germany and the US, field capacity is defined as the water content at a pressure

of ca. -33 kPa, but different pressures are used in other countries (-5 kPa in the UK, -10 kPa

in the Netherlands, -6 kPa in Canada).  There is no recommendation for the use of a specific

pressure in the PELMO manual.  Table 24 shows that losses predicted by PELMO can be

significantly influenced by field capacity and a small discrepancy in the pressures at which

measurement is made may result in large discrepancies in predicted losses.  Furthermore, the

determination of field capacity is uncertain because of spatial, temporal and analytical

variability.
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OLW OTW OLH OTH

1 DEGR 12.3 KF 274.3 DEGR 110.5 DEGR 16384

2 WC-FC 10.3 DEGR 197.9 WC-FC 67.8 KF 14425

3 KF 7.54 NF 167.3 NF 36.7 NF 6923

4 NF 6.75 WC-FC 37.8 KF 34.5 WC-FC 450

5 QTEN 5.98 BUD 23.2 QTEN 17.3 QTEN 94.1

6 BUD 4.15 QTEN 22.3 BUD 8.13 BUD 46.5

7 ASM 3.00 ASM 12.2 ASM 7.32 ASM 32.0

8 MEXP 0.906 MEXP 5.42 MEXP 1.03 MEXP 4.16

9 AMXD 0.375 COVM 0.760 WP 0.683 CINT 0.865

10 WP 0.288 CINT 0.730 COVM 0.376 COVM 0.864

11 COVM 0.255 UPTK 0.375 CINT 0.300 WP 0.517

12 CINT 0.184 AMXD 0.343 AMXD 0.197 UPTK 0.355

13 UPTK 0.061 WP 0.335 UPTK 0.059 AMXD 0.331

14 HENR 0.045 FEXT 0.046 HENR 0.039 FEXT 0.046

15 PDRA 0.026 PDRA 0.038 FEXT 0.033 PDRA 0.039

16 FEXT 0.021 HENR 0 PDRA 0.033 HENR 0

Table 24.  The 15 most influential parameters on the prediction of pesticide losses by PELMO for

the four scenarios as determined by one-at-a-time sensitivity analysis

(classification by MAROV values)

3.2.3 Results for the Monte Carlo analysis

PELMO input parameters obtained from sampling in the different probability distributions are

presented in Appendices 93 to 96.  A total of 250 runs were carried out for each scenario

using the sampled input parameters.  Basic statistics on the percolation and pesticide losses

predicted by MACRO are presented in Table 25.  More detailed statistics can be found in

Appendices 104 to 106.

Recharge (mm) Pesticide losses (g/ha)

OLW OTW OLH OTH OLW OTW OLH OTH

Minimum 842.2 1890.0 1212.6 1768.2 0.0 0.0 0.0 0.0

Mean 965.2 2170.4 1583.5 2265.1 59.6 9.3 4.0 0.56

Median 963.5 2164.6 1578.7 2244.5 28.8 0.2 0.4 0.0

Maximum 1127.5 2540.4 2091.1 3007.4 452.7 9.26 63.8 20.1

CV (%) 6 6 10 10 127 279 222 411

Table 25. Basic statistics on PELMO predictions for the four scenarios

using input parameters generated by Monte Carlo sampling

Regression techniques were used for non-transformed standardised data and transformed

(ranked) standardised data.  Coefficients of determination related to pesticide losses for the

transformed data (r2 0.92-0.95) were significantly larger than those for non-transformed data
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(r2 0.25-0.65) because of the inherent non-linearity in the prediction of pesticide losses by

PELMO.  Classification of parameters according to their influence on prediction of recharge

and pesticide losses was therefore conducted using Standardised Rank Regression

Coefficients only (Tables 26 and 27).  The larger the absolute values of the regression

coefficients (SRCC) the more influence the parameter has.  An increase in a parameter with a

positive SRCC will result in an increase in the model output and vice versa.

OLW OTW OLH OTH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

WC_FC -0.9913 1 -0.9812 1 -0.9711 1 -0.9749 1

WP 0.1412 2 0.1369 2 0.2084 2 0.2149 2

PDRA -0.0023 12 0.0027 12 -0.0007 19 0.0217 3

CINTCP -0.0082 3 -0.0054 5 -0.0028 14 -0.0080 7

AMXDR 0.0018 16 -0.0057 4 -0.0070 6 0.0093 5

ANETD -0.0012 17 0.0026 14 -0.0115 3 0.0062 11

FEXT 0.0020 15 0.0068 3 0.0049 11 -0.0075 9

ASM 0.0064 5 0.0011 18 -0.0050 10 -0.0086 6

COVMAX 0.0044 8 -0.0028 11 -0.0018 16 0.0110 4

OC -0.0055 7 -0.0043 6 0.0072 5 -0.0026 15

UPTK -0.0042 9 -0.0043 7 0.0025 15 -0.0080 8

KF -0.0056 6 0.0038 8 0.0059 7 -0.0035 13

BUD -0.0076 4 -0.0029 10 0.0007 18 -0.0054 12

PH 0.0022 13 -0.0034 9 -0.0074 4 -0.0035 14

MEXP 0.0037 10 -0.0001 19 0.0052 9 0.0072 10

HENR -0.0034 11 -0.0017 16 -0.0044 12 0.0025 16

NF -0.0009 18 -0.0017 15 -0.0056 8 0.0010 19

DEGR -0.0008 19 -0.0027 13 0.0035 13 0.0014 17

QTEN 0.0021 14 0.0015 17 -0.0008 17 0.0012 18

Table 26.  Classification of PELMO input parameters according to their influence

on results for recharge (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients
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OLW OTW OLH OTH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

DEGR -0.6316 1 -0.4369 3 -0.5302 1 -0.4251 3

KF -0.5054 2 -0.5632 1 -0.4609 2 -0.4639 2

NF 0.2400 5 0.5628 2 0.4119 3 0.6755 1

WC_FC -0.2931 3 -0.2111 4 -0.3158 4 -0.1697 4

QTEN 0.2860 4 0.1523 5 0.2502 5 0.1458 5

ASM 0.1648 6 0.1007 7 0.1296 6 0.1027 6

BUD -0.1028 7 -0.0811 8 -0.0661 7 -0.0420 8

MEXP 0.0667 8 0.1038 6 0.0300 9 0.0326 9

AMXDR -0.0363 9 -0.0603 9 -0.0177 10 -0.0284 10

FEXT 0.0256 11 -0.0175 12 -0.0067 18 -0.0500 7

WP 0.0176 12 -0.0441 10 0.0094 15 0.0019 19

CINTCP -0.0287 10 0.0076 16 -0.0106 14 -0.0152 12

ANETD -0.0016 18 0.0010 19 -0.0370 8 -0.0085 14

UPTK 0.0128 13 0.0089 14 -0.0131 12 -0.0126 13

HENR -0.0115 15 -0.0072 17 0.0048 19 0.0193 11

COVMAX 0.0127 14 -0.0078 15 0.0144 11 -0.0062 15

PH 0.0006 19 -0.0224 11 -0.0093 16 0.0056 17

OC 0.0067 16 -0.0156 13 0.0070 17 -0.0056 16

PDRA -0.0060 17 0.0048 18 -0.0113 13 0.0033 18

Table 27.  Classification of PELMO input parameters according to their influence

on results for pesticide losses (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients

Table 26 shows that recharge volumes are almost exclusively sensitive to the parameters WC

(soil moisture content at the beginning of the simulation period) and FC (soil moisture content

at field capacity) which were linked in this study.  The sensitivity of recharge predicted by

PELMO can therefore be estimated using a simple linear regression.  However, it is likely that

the effects of these two parameters will be overruled by the importance of the difference

between rainfall and potential evapotranspiration (PET).  Measured rainfall and calculated

PET are uncertain variables. Uncertainty in rainfall data mainly originates from experimental

inaccuracies in the measurement of precipitation. Uncertainty in PET results from the

existence of different formulas for calculating PET which lead to different PET estimations.

Recommendations for the calculation of PET to be used in pesticide fate models should be

derived.  Also, the different treatment of PET by different models to derive actual

evapotranspiration should be addressed.

Most of the PELMO input parameters which were varied did not have any influence on

prediction of recharge, as showed in the one-at-a-time sensitivity analysis.  These were

nevertheless attributed a regression coefficient when using linear regression techniques

(Table 26).  For instance, the pesticide degradation rate (PDRA) was rated the third most

influential parameter on the prediction of recharge in the OTH scenario, but the importance
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given to this parameter is obviously flawed.  It is therefore recommended that the use of linear

regression techniques and Monte Carlo sampling is limited to parameters that are known to

have an influence of the output under investigation.  This may require a limited one-at-a-time

sensitivity analysis to be carried out.

Table 27 shows a ranking of PELMO parameters according to their influence on the

prediction of pesticide losses.  Predictions for pesticide losses were largely influenced by

parameters related to sorption and degradation and by the water content at field capacity, to a

lesser extent.  Regression coefficients were well below unity and 6-7 parameters presented a

SRCC >0.1.  This stresses the more complex description of pesticide fate in PELMO as

compared to the description of water flow phenomena.

OLW OTW OLH OTH

1 DEGR -0.632 KF -0.563 DEGR -0.530 NF 0.675

2 KF -0.505 NF 0.563 KF -0.461 KF -0.464

3 WC_FC -0.293 DEGR -0.437 NF 0.412 DEGR -0.425

4 QTEN 0.286 WC_FC -0.211 WC_FC -0.316 WC_FC -0.170

5 NF 0.240 QTEN 0.152 QTEN 0.250 QTEN 0.146

6 ASM 0.165 MEXP 0.104 ASM 0.130 ASM 0.103

7 BUD -0.103 ASM 0.101 BUD -0.066 FEXT -0.050

8 MEXP 0.067 BUD -0.081 ANET -0.037 BUD -0.042

9 AMXD -0.036 AMXD -0.060 MEXP 0.030 MEXP 0.033

10 CINT -0.029 WP -0.044 AMXD -0.018 AMXD -0.028

11 FEXT 0.026 PH -0.022 COVM 0.014 HENR 0.019

12 WP 0.018 FEXT -0.017 UPTK -0.013 CINT -0.015

13 UPTK 0.013 OC -0.016 PDRA -0.011 UPTK -0.013

14 COVM 0.013 UPTK 0.009 CINT -0.011 ANET -0.009

15 HENR -0.012 COVM -0.008 WP 0.009 COVM -0.006

Table 28.  The 15 most influential parameters on the prediction of pesticide losses

 by PELMO for the four scenarios (Monte Carlo sampling).

Parameters are classified according by Standardised Rank Regression Coefficients (SRRC).

3.3 PRZM 3.14ββ

3.3.1 Results for the four scenarios (the four “base-cases”)

 Tables 29 and 30 present annual and cumulative water percolation and pesticide losses

simulated by PRZM for the four scenarios.  Predicted percolation was very similar for the

Hodnet and Wick soils (mean annual difference 12 mm).  It is not clear why annual values for

percolation for non-leap years were predicted to be different as the same weather data were
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used for each of the 10 years of simulation.  Total pesticide losses were predicted to be largest

for the Pesticide L on Wick scenario (31.7 g/ha).  Virtually no pesticide leaching was

predicted for the scenario describing the leaching of pesticide T in the Hodnet soil.  Pesticide

losses were predicted to be larger for pesticide L than for pesticide T for a given soil.  Also,

larger losses were predicted by PRZM from the sandy loam Wick soil than from the more

structured Hodnet soil.  These findings are similar to those reported for PELMO.

Percolation (mm) Pesticide losses at 1-m depth (g/ha)

ZLW ZTW ZLH ZTH ZLW ZTW ZLH ZTH

1985 350 350 347 347 0.03 <0.01 <0.01 <0.01

1986 305 305 293 293 28.8 <0.01 0.67 <0.01

1987 305 305 293 293 2.85 <0.01 0.22 <0.01

1988 306 306 294 294 <0.01 0.09 <0.01 <0.01

1989 305 305 293 293 <0.01 0.24 <0.01 <0.01

1990 305 305 293 293 <0.01 0.14 <0.01 <0.01

1991 305 305 293 293 <0.01 0.03 <0.01 <0.01

1992 297 297 281 281 <0.01 <0.01 <0.01 <0.01

1993 297 297 280 280 <0.01 <0.01 <0.01 <0.01

1994 297 297 280 280 <0.01 <0.01 <0.01 <0.01

Table 29.  Annual percolation and pesticide losses predicted by PRZM for the four scenarios

ZLW ZTW ZLH ZTH

Number of years 10 10 10 10

Total percolation (mm) 3071 3071 2948 2948

Total pesticide losses at 1-m depth (g/ha) 31.7 0.52 0.89 4.04 × 10-3

Total pesticide losses at 1-m depth (% applied) 1.59 0.03 0.04 2.02 × 10-4

Table 30.  Accumulated percolation and pesticide losses predicted by PRZM

for the four scenarios

Figure 9 presents monthly pesticide losses predicted by PRZM for the four scenarios.  No

major pesticide leaching was predicted between May and September of each year since

PRZM did not predict that water would leach out of the bottom of the soil cores.  Pesticide

leaching profiles were similar for the two soils, but differed significantly between the two

pesticides.  Pesticide L was characterised by a leaching pattern which started at the end of the

first year and which extended over two years, whereas leaching for pesticide T was initiated

later (i.e. end of the third year) and lasted for five years.
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Figure 9.  Monthly pesticide losses predicted by PRZM for the four scenarios (g/ha)

3.3.2 Results for the one-at-a-time sensitivity analysis

A total of 952 runs was carried out to assess the sensitivity of PRZM to the 22 primary parameters for

the four scenarios, using the one-at-a-time approach.

The influence of variation of the parameters on the prediction of recharge and pesticide losses by

PRZM is presented graphically in Appendices 123 to 130 and numerically in Appendices 131 to 138.

Examples of charts obtained for Pesticide L in the Wick soil are provided in Figures 10 and 11.

ZLW ZLH

ZTW ZTH
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Figure 10.  Influence of the variation of input parameters on recharge volumes

predicted by PRZM for the ZLW (Pesticide L on Wick) scenario
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 Figure 11.  Influence of the variation of input parameters on pesticide losses

predicted by PRZM for the ZLW (Pesticide L on Wick) scenario

Tables 31 and 32 provide summaries of the sensitivity of the model to changes in input

parameters for the four scenarios.
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Wick Hodnet

Pesticide L Pesticide T Pesticide L Pesticide T Influence

FC Field Capacity 0.457 0.457 0.613 0.613 -

ANET Min. depth for extraction of evap. 0.262 0.262 0.290 0.290 -

WP Wilting point 0.169 0.169 0.324 0.324 +

AMXD Maximum rooting depth 0.210 0.210 0.235 0.235 -

CINT Maximum interception storage 0.015 0.015 0.015 0.015 -

COVM Maximum areal coverage of canopy 0.015 0.015 0.015 0.015 -

HTMA Maximum canopy height 0 0 0 0

UPTK Plant uptake factor 0 0 0 0

PLDK Pesticide decay rate on canopy 0 0 0 0

FEXT Foliar extraction coefficient 0 0 0 0

NF Freundlich exponent 0 0 0 0

A Albedo 0 0 0 0

EM Emmissivity 0 0 0 0

T Average monthly temp at BB 0 0 0 0

QTEN qten 0 0 0 0

MEXP Moisture exponent for degradation 0 0 0 0

ASM Reference moisture for degradation 0 0 0 0

BD Bulk density 0 0 0 0

DEG Degradation rate 0 0 0 0

OC Organic carbon content 0 0 0 0

KD Freundlich coefficient 0 0 0 0

TINI Initial temp of the horizon 0 0 0 0

Table 31.  Classification of PRZM parameters according to their influence on recharge

 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter

will result in an increase of recharge and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Extremely sensitive

Very sensitive

Moderately sensitive

Slightly sensitive

Insensitive
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Wick Hodnet

Pesticide L Pesticide T Pesticide L Pesticide T Influence

NF Freundlich exponent 5.1 182.1 21.2 3476.9 +

KD Freundlich coefficient 6.1 204.6 16.9 1061.1 -

DEG Degradation rate 11.1 138.9 59.7 1061.9 -

QTEN qten 7.4 35.6 18.9 91.4 +

FC Field Capacity 11.4 43.5 18.6 33.8 -

BD Bulk density 3.6 17.6 6.1 21.9 -

ASM Reference moisture for degradation 2.7 9.9 5.6 18.8 +

T Average monthly temp at BB 0.663 1.8 1.7 4.1 -

MEXP Moisture exponent for degradation 0.583 2.6 0.234 1.1 +

WP Wilting point 0.282 0.430 0.618 2.0 +

ANET Min. depth for extraction of evap. 0.099 (+) 0.488 (+/-) 0.043 (+/-) 1.8 (-) +/-

EM Emmissivity 0.284 0.753 0.393 0.929 +

AMXD Maximum rooting depth 0.533 (+/-) 0.649 (+/-) 0.496 (+/-) 0.359 (+/-) +/-

HTMA Maximum canopy height 0.164 0.401 0.237 0.485 -

UPTK Plant uptake factor 0.180 0.279 0.206 0.295 -

PLDK Pesticide decay rate on canopy 0.017 (-) 0.177 (-) 0.114 (+) 0.613 (-) +/-

COVM Maximum areal coverage of canopy 0.114 0.230 0.137 0.266 -

FEXT Foliar extraction coefficient 0.019 (+) 0.072 (+/-) 0.039 (+) 0.306 (+/-) +/-

A Albedo 0.035 0.102 0.050 0.126 -

CINT Maximum interception storage 0.013 0.056 0.028 0.088 -

OC Organic carbon content 0 0 0 0

TINI Initial temp of the horizon 0 0 0 0

Table 32.  Classification of PRZM parameters according to their influence on pesticide losses

 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter

will result in an increase of pesticide losses and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Results from the sensitivity analysis with regard to the prediction of recharge by PRZM were

only dependent on the  soil considered and not on the pesticide.  For both soils, recharge

volumes predicted by PRZM were only sensitive to a few parameters. The magnitude of the

change in predicted recharge was rather small (MAROV<0.7) and it was only marginally

affected by the nature of the soil.  The input parameter which had the most influence on

predictions was “field capacity”, which consists in the field capacity value as determined from

the water release curve and the soil moisture content at the beginning of the simulations (i.e.

initial soil moisture content was set at field capacity).  Other parameters which were found to

influence the prediction of recharge were those related to the moisture status of the soil

(wilting point), to the computation of the actual evapotranspiration from potential

evapotranspiration data (minimum depth for extraction of evaporation) and to the description

Extremely sensitive

Very sensitive

Moderately  sensitive

Slightly sensitive

Insensitive
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of the plant cover (maximum rooting depth, maximum interception storage and maximum

areal coverage of the canopy).

In contrast to the prediction of recharge volumes, prediction of losses of pesticides by PRZM

were very much affected by changes in input parameters.  The magnitude of the sensitivities

changed according to the different scenarios.  Large to very large sensitivities were found for

all four scenarios (maximum MAROV value ~3500) and the largest sensitivities were

attributed to pesticide T which leached only to a small extent in both soils.

Table 33 presents the 15 parameters which were found to most influence predictions of total

pesticide losses by PRZM.  Although the most influential parameters were different for each

scenario, the same parameters were consistently found at the top of the list.  This is

particularly obvious for the first six parameters at the top of the table, which are related to

pesticide sorption (Freundlich distribution coefficients and exponent), pesticide degradation

(degradation rates, QTEN) as well as the description of the soil (field capacity/initial soil

moisture content, bulk density).  Field capacity appeared as one of the most influential

parameters for predictions of pesticide losses by PRZM (see for instance scenario involving

Pesticide L in the Wick soil).  Again, there is some uncertainty in PRZM as to how the field

capacity should be calculated as rules for deriving field capacity values vary between

countries.

The organic carbon content was not found to have any influence on prediction of pesticide

losses (Table 32) because Kd values were used directly in the input file.  Nevertheless, it

should be noted that variation in organic carbon would have significantly influenced PRZM

predictions if the Koc approach (i.e. supplying the Koc and organic carbon content for each

soil horizon) had been used.  The initial temperature of the different layers of the soil profile

did not influence PRZM predictions for losses for the four scenarios considered here.



Soil Survey and Land Research Centre

59

ZLW ZTW ZLH ZTH

1 FC 11.4 KD 204.6 DEG 59.7 NF 3476.9

2 DEG 11.1 NF 182.1 NF 21.2 DEG 1061.9

3 QTEN 7.4 DEG 138.9 QTEN 18.9 KD 1061.1

4 KD 6.1 FC 43.5 FC 18.6 QTEN 91.4

5 NF 5.1 QTEN 35.6 KD 16.9 FC 33.8

6 BD 3.6 BD 17.6 BD 6.1 BD 21.9

7 ASM 2.7 ASM 9.9 ASM 5.6 ASM 18.8

8 T 0.663 MEXP 2.6 T 1.7 T 4.1

9 MEXP 0.583 T 1.848 WP 0.618 WP 2.0

10 AMXD 0.533 EM 0.753 AMXD 0.496 ANET 1.8

11 EM 0.284 AMXD 0.649 EM 0.393 MEXP 1.1

12 WP 0.282 ANET 0.488 HTMA 0.237 EM 0.929

13 UPTK 0.180 WP 0.430 MEXP 0.234 PLDK 0.613

14 HTMA 0.164 HTMA 0.401 UPTK 0.206 HTMA 0.485

15 COVM 0.114 UPTK 0.279 COVM 0.137 AMXD 0.359

Table 33.  The 15 most influential parameters on the prediction of pesticide losses by PRZM

for the four scenarios as determined by one-at-a-time sensitivity analysis

(classification by MAROV values)

3.3.3 Results for the Monte Carlo analysis

Descriptive statistics on the values for the PRZM input parameters obtained via sampling into

probability distribution functions are presented in Appendices 149 to 152.  A total of 250 runs

was carried out for each scenario using the randomly sampled values.  Basic statistics on the

recharge volumes and pesticide losses predicted by PRZM are presented in Table 34.  More

detailed statistics can be found in Appendices 153 to 162.

Recharge (mm) Pesticide losses (g/ha)

ZLW ZTW ZLH ZTH ZLW ZTW ZLH ZTH

Minimum 2584 2642 2419 2435 6.8×10-7 0 3.6×10-15 0

Mean 3075 3075 2943 2943 75.8 19.7 5.2 2.2

Median 3065 3080 2960 2937 40.5 1.1 1.3 0.01

Maximum 3636 3632 3459 3520 468.9 375.6 86.2 63

CV (%) 0.06 0.07 0.07 0.06 1.2 2.4 1.8 3.5

Table 34.  Basic statistics on PRZM predictions for the four scenarios

Regression techniques were used for non-transformed standardised data and transformed

(ranked) standardised data.  Coefficients of determination related to pesticide losses for the

transformed data (r2 0.93-0.96) were significantly larger than those for non-transformed data

(r2 0.34-0.71) because of the inherent non-linearity in the prediction of pesticide losses by

PRZM.  Classification of parameters according to their influence on prediction of recharge
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and pesticide losses was therefore conducted using Standardised Rank Regression

Coefficients only (Tables 35 and 36).  The larger the absolute values of the regression

coefficients (SRCC) the more influence the parameter has.  An increase in a parameter with a

positive SRCC will result in an increase in the model output and vice versa.

ZLW ZTW ZLH ZTH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

FC -0.735 1 -0.757 1 -0.561 1 -0.628 1

AMXD -0.487 2 -0.418 2 -0.469 2 -0.533 2

ANET -0.373 3 -0.343 3 -0.359 4 -0.409 4

WP 0.275 4 0.278 4 0.438 3 0.462 3

CINT -0.034 6 0.020 8 -0.031 5 0.032 6

OC -0.028 7 -0.015 10 0.015 11 -0.031 8

EM -0.022 9 -0.013 11 -0.015 10 -0.032 7

T -0.036 5 0.006 20 0.003 19 0.028 9

DEG -0.009 16 -0.009 16 0.026 6 0.025 10

MEXP 0.014 14 -0.008 18 -0.020 8 0.023 11

KD 0.008 18 0.025 6 0.026 7 0.005 18

PLDK 0.003 20 0.009 14 0.005 18 -0.037 5

BD 0.003 21 -0.022 7 0.018 9 0.010 14

QTEN 0.004 19 -0.027 5 -0.002 21 -0.018 12

ASM -0.028 8 -0.007 19 -0.010 13 -0.006 16

COVM -0.020 10 0.017 9 -0.010 12 -0.002 20

HTMA 0.016 12 0.005 21 -0.003 20 -0.016 13

FEXT 0.016 11 -0.009 15 0.009 14 -0.001 22

A -0.010 15 0.010 12 0.008 15 -0.005 17

TINI 0.009 17 0.008 17 -0.007 17 -0.007 15

UPTK 0.015 13 0.002 22 0.008 16 -0.004 19

NF 0.002 22 -0.010 13 0.001 22 -0.002 21

Table 35.  Classification of PRZM input parameters according to their influence

on results for recharge (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients
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ZLW ZTW ZLH ZTH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

DEG -0.590 1 -0.450 3 -0.639 1 -0.430 3

KD -0.523 2 -0.547 1 -0.479 2 -0.451 2

NF 0.243 5 0.523 2 0.462 3 0.684 1

FC -0.363 3 -0.219 4 -0.264 5 -0.122 5

QTEN 0.278 4 0.207 5 0.280 4 0.197 4

ASM 0.184 6 0.129 6 0.086 6 0.055 6

BD -0.059 8 -0.091 7 -0.079 7 -0.047 7

MEXP 0.058 9 0.024 11 0.057 8 0.031 9

T -0.030 10 -0.041 8 -0.056 9 -0.044 8

UPTK -0.070 7 -0.011 16 -0.054 10 -0.023 10

TINI 0.024 13 0.009 19 0.053 11 0.015 17

AMXD -0.025 12 -0.014 15 -0.019 17 0.022 11

ANET 0.006 16 -0.010 17 -0.031 12 -0.021 13

EM 0.023 14 -0.018 13 -0.004 19 -0.021 12

WP 0.028 11 0.026 9 -0.003 21 0.003 21

A 0.008 15 -0.001 22 0.028 13 0.018 15

FEXT -0.001 22 0.008 20 -0.025 15 0.015 16

COVM -0.006 17 -0.025 10 0.004 20 0.012 18

HTMA -0.002 20 -0.020 12 -0.007 18 0.012 19

PLDK 0.001 21 -0.016 14 0.020 16 0.003 20

CINT -0.004 18 -0.002 21 0.026 14 -0.002 22

OC 0.003 19 0.010 18 0.002 22 0.019 14

Table 36.  Classification of PRZM input parameters according to their influence

on results for pesticide losses (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients

Table 35 shows that only the four most sensitive parameters were consistent between the four

different scenarios and contributed significantly to the sensitivity of recharge predictions

(|SRCC|>0.1).  This was expected to some extent since the one-at-a-time sensitivity analysis

demonstrated that only six parameters from those selected for this study influenced the

prediction of recharge by PRZM.  The most influential parameter was the field capacity which

had a negative influence on the prediction of recharge (i.e. the smaller the field capacity, the

more recharge).  The next three most sensitive parameters were the maximum rooting depth

(AMXD), the minimum depth for extraction of evaporation (ANET) and the wilting point

(WP).  Results for the Monte Carlo analysis are therefore consistent with those for the one-at-

a-time sensitivity analysis for the first few most sensitive parameters.  Most of the input

parameters did not have any influence on the prediction of recharge volumes as demonstrated

in the one-at-a-time sensitivity analysis, but were nevertheless attributed a sensitivity

coefficient.  Again, this is one of the disadvantages of using an approach that uses a

combination of Monte Carlo sampling and multiple linear regressions.
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Table 37 presents the 15 parameters which most influence the prediction of pesticide losses

by PRZM.  Results were fairly consistent with those from the one-at-a-time sensitivity

analysis in that the top of the list of the most sensitive parameters was affected by the scenario

considered.  The most sensitive parameters were those related to the sorption and degradation

of pesticides (i.e. degradation rates, Freundlich coefficient and exponent).  Field capacity was

again found to significantly influence prediction of pesticide losses by PRZM, although this

was less clear than for the one-at-a-time approach where field capacity was the most sensitive

parameter for the ZLW scenario.

ZLW ZTW ZLH ZTH

1 DEG -0.590 KD -0.547 DEG -0.639 NF 0.684

2 KD -0.523 NF 0.523 KD -0.479 KD -0.451

3 FC -0.363 DEG -0.450 NF 0.462 DEG -0.430

4 QTEN 0.278 FC -0.219 QTEN 0.280 QTEN 0.197

5 NF 0.243 QTEN 0.207 FC -0.264 FC -0.122

6 ASM 0.184 ASM 0.129 ASM 0.086 ASM 0.055

7 UPTK -0.070 BD -0.091 BD -0.079 BD -0.047

8 BD -0.059 T -0.041 MEXP 0.057 T -0.044

9 MEXP 0.058 WP 0.026 T -0.056 MEXP 0.031

10 T -0.030 COVM -0.025 UPTK -0.054 UPTK -0.023

11 WP 0.028 MEXP 0.024 TINI 0.053 AMXD 0.022

12 AMXD -0.025 HTMA -0.020 ANET -0.031 ANET -0.021

13 TINI 0.024 EM -0.018 A 0.028 EM -0.021

14 EM 0.023 PLDK -0.016 CINT 0.026 OC 0.019

15 A 0.008 AMXD -0.014 FEXT -0.025 A 0.018

Table 37.  The 15 most influential parameters on the prediction of pesticide losses

 by PRZM for the four scenarios (Monte Carlo sampling).

3.4 PESTLA 3.4

3.4.1 Results for the four scenarios (the four “base-cases”)

Tables 38 and 39 present annual and cumulative percolation and losses of pesticide simulated

by PESTLA for the four scenarios.  Predicted water percolation was similar for the two soil

scenarios (annual difference 3 mm).  Total pesticide losses were predicted to be 38.8 g/ha for

the scenario involving Pesticide L in the Wick soil, but predictions were much smaller for the

three remaining scenarios.  Virtually no leaching was predicted for the scenario involving

Pesticide T and Hodnet soil (total losses 0.043 g/ha).  Losses were predicted to be larger for

pesticide L than for pesticide T.  For a given pesticide, pesticide losses were predicted to be

larger in the sandy loam than in the more structured clay loam.  This is partly due to the non-

inclusion of a description of preferential flow processes in PESTLA.
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Percolation (mm) Pesticide losses at 1-m depth (g/ha)

ALW ATW ALH ATH ALW ATW ALH ATH

1985 326 326 329 329 <0.01 0 <0.01 0

1986 326 326 329 329 38.50 <0.01 3.22 <0.01

1987 326 326 329 329 0.30 0.34 0.04 0.03

1988 326 326 329 329 0 0.24 0 0.02

1989 326 326 329 329 0 <0.01 0 <0.01

1990 326 326 329 329 0 <0.01 0 0

1991 326 326 329 329 0 0 0 0

1992 326 326 329 329 0 0 0 0

Table 38.  Annual percolation and pesticide losses predicted by PESTLA for the four scenarios

ALW ATW ALH ATH

Number of years 8 8 8 8

Total percolation (mm) 2608 2608 2632 2632

Total pesticide losses at 1-m depth (g/ha) 38.800 0.606 3.260 0.043

Total pesticide losses at 1-m depth (% applied) 1.84 0.03 0.16 2.1×10-3

Table 39.  Accumulated percolation and pesticide losses predicted by PESTLA

for the four scenarios

Figure 12 presents daily pesticide losses predicted by PESTLA for the four scenarios.

Leaching breakthrough appeared to be dependent on the compound considered.  For pesticide

L (scenarios ALW and ALH), losses by percolation occurred over a period of one year,

whereas losses were simulated over three to four years for Pesticide T.  Losses for pesticide L

were dominated by a single leaching event occurring in mid-April 1986, whereas losses for

pesticide T were more evenly distributed between the years.
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Figure 12.  Daily pesticide losses predicted by PESTLA for the four scenarios (g/ha)

3.4.2 Results for the one-at-a-time sensitivity analysis

A total of 1408 model runs were carried out to assess the one-at-a-time sensitivity of PESTLA

to the 34 primary parameters for the four scenarios.

The results of the influence of input parameters on the prediction of percolation and pesticide

losses are presented graphically in Appendices 188 to 195.  Examples of charts for the ALW

scenario are presented in Figures 13 and 14.  These charts present the variation in PESTLA

output (either cumulative percolation or cumulative pesticide losses) vs. the variation in the

input.
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Figure 13.  Influence of the variation of input parameters on recharge volumes

predicted by PESTLA for the ALW (Pesticide L on Wick) scenario
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Figure 14.  Influence of the variation of input parameters on pesticide losses

predicted by PESTLA for the ALW (Pesticide L on Wick) scenario

Table 40 and 41 provide summaries of the sensitivity of the model to changes in input

parameters for the four scenarios.
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Wick Hodnet
Pesticide L Pesticide T Pesticide L Pesticide T Influence

CFTB Crop factor 0.331 0.331 0.332 0.332 -
COFR Soil evaporation coefficient of Blak and

Boesten or Boesten/Stroosnijder
0.307 0.307 0.304 0.304 -

G6 Parameter n 0.153 0.153 0.243 0.243 +
RSIG Minimum rainfall to reset models 0.123 0.123 0.134 0.134 +/-
IF1 Extinction coefficient for diffuse visible

light
0.115 0.115 0.061 0.061 -

IR1 Extinction coefficient for direct visible light 0.115 0.115 0.061 0.061 -
G2 Saturated moisture content 0.153 0.153 0 0 -
RDTB maximum rooting depth 0.153 0.153 0 0 -
GCTB Maximum leaf area index 0.061 0.061 0.030 0.030 -
RDS maximum rooting depth allowed by soil

profile
0.061 0.061 0 0 -

G1 Residual moisture content 0.038 0.038 0 0 +
G3 Saturated hydraulic conductivity 0.031 0.031 0.004 0.004 +
G4 Alpha main drying curve 0 0 0.015 0.015 -
PSA sand content 0 0 0 0
PSI silt content 0 0 0 0
PCL clay content 0 0 0 0
ORG organic matter content 0 0 0 0
HI initial pressure heads 0 0 0 0
TEMI initial soil temperatures 0 0 0 0
RDD Root density distribution 0 0 0 0
BD Bulk density 0 0 0 0
LEDS Lengths of dispersion in liquid phase 0 0 0 0
THAI Thickness of the stagnant air layer at soil

surface
0 0 0 0

SUWA Coefficient of diffusion in water 0 0 0 0
SUAI Coefficient of diffusion in air 0 0 0 0
ENSL Molar enthalpy of the dissolution process 0 0 0 0
SAVP Saturated vapour pressure 0 0 0 0
ENVP Molar enthalpy of the vaporisation

process
0 0 0 0

CFUP Coefficient of uptake by plants 0 0 0 0
DEG Half life 0 0 0 0
EGCV Molar activation energy of degradation 0 0 0 0
CFLI Coefficient describing the relationship

between the conversion rate and the
volume fraction of liquid

0 0 0 0

KOM Kom 0 0 0 0
FREU Freundlich exponent 0 0 0 0

Table 40.  Classification of PESTLA parameters according to their influence on recharge

 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter

will result in an increase of recharge and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Extremely sensitive

Very sensitive

Moderately sensitive

Slightly sensitive

Insensitive
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Wick Hodnet
Pesticide L Pesticide T Pesticide L Pesticide T Influence

FREU Freundlich exponent 4.5 107.2 9.7 357.8 +
KOM Kom 4.6 81.8 7.7 190.1 -
DEG Half life 3.8 34.6 7.8 112.7 +
ORG organic matter content 3.0 13.8 4.1 20.8 -
BD Bulk density 3.0 12.8 4.0 18.8 -
EGCV Molar activation energy of degradation 4.1 10.0 5.8 16.2 +
LEDS Lengths of dispersion in liquid phase 1.0 4.3 2.9 10.4 +
G6 Parameter n 2.8 1.3 8.0 4.0 +
G2 Saturated moisture content 1.8 1.5 5.4 1.8 -
COFR Soil evaporation coefficient of Blak and

Boesten or Boesten/Stroosnijder
0.162 0.914 0.309 1.8 -

CFTB Crop factor 0.164 0.740 0.288 1.4 -
RDTB maximum rooting depth 0.129 0.449 0.153 1.1 +/-
RDS maximum rooting depth allowed by soil

profile
0.052 0.356 0.074 0.893 +/-

SUWA Coefficient of diffusion in water 0.129 0.165 0.307 0.749 +
RSIG Minimum rainfall to reset models 0.026 0.396 0.074 0.828 +/-
G3 Saturated hydraulic conductivity 0.313 0.341 0.352 0.248 +
G1 Residual moisture content 0.515 0.165 0.184 0.093 -
G4 Alpha main drying curve 0.129 0.413 0.153 0.186 +/-
IF1 Extinction coefficient for diffuse visible

light
0.057 0.248 0.153 0.233 +/-

IR1 Extinction coefficient for direct visible light 0.057 0.248 0.153 0.233 +/-
GCTB Maximum leaf area index 0.052 0.165 0.153 0.233 +/-
PSI silt content 0 0 0 0.581 +/-
CFLI Coefficient describing the relationship

between the conversion rate and the
volume fraction of liquid

0.026 0.231 0.031 0.116 +

CFUP Coefficient of uptake by plants 0.026 0.099 0.012 0.116 -
PSA sand content 0 0.033 0 0.116 +/-
PCL clay content 0 0.017 0 0.116 +/-
HI initial pressure heads 0 0 0 0
TEMI initial soil temperatures 0 0 0 0
RDD Root density distribution 0 0 0 0
THAI Thickness of the stagnant air layer at soil

surface
0 0 0 0

SUAI Coefficient of diffusion in air 0 0 0 0
ENSL Molar enthalpy of the dissolution process 0 0 0 0
SAVP Saturated vapour pressure 0 0 0 0
ENVP Molar enthalpy of the vaporisation

process
0 0 0 0

Table 41.  Classification of PESTLA parameters according to their influence on pesticide losses

 (values presented are MAROV)

A positive influence means that an increase in the value of the parameter

will result in an increase of recharge and vice versa

The shades of grey represent a classification of parameters into sensitivity classes as follows:

Extremely sensitive

Very sensitive

Moderately sensitive

Slightly sensitive

Insensitive
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Results from the sensitivity analysis with regard to the prediction of percolation by PESTLA

were only dependent on the soil type (i.e. the nature of the pesticide did not affect the ranking

of parameters).  A large number of input parameters affected the percolation predicted by

PESTLA (12 parameters for the Wick soil, 9 parameters for the Hodnet soil), but their

influence was rather small (MAROV values < 0.35).  Influential variables included crop

parameters (crop factor, extinction coefficients, maximum rooting depth, maximum leaf area

index, maximum rooting depth allowed by the soil profile), parameters related to

evapotranspiration (soil evaporation coefficient, minimum rainfall to reset models) and

parameters related to the description of the water release characteristics (parameters for the

Van Genuchten equation).  Again, as noted for the other models, the main driver for the

prediction of recharge will be the meteorological data which are provided to the model and

parameters within the model will affect the predicted accumulated percolation to a small

extent only.  Although the coefficient for soil evaporation (know as CFBS in SWAP) was not

included in the list of parameters to be varied, it is possible that this is an influential

parameter.  This parameter is helpful for correcting the conversion of potential

evapotranspiration to actual evapotranspiration.

In contrast to the prediction of percolation by PESTLA, prediction of cumulative pesticide

losses were greatly affected by changes in input parameters.  The magnitude of the

sensitivities was dependent on the different scenarios and was smallest for the scenario where

the greatest losses were predicted (Pesticide L on Wick, maximum MAROV 5.9) and largest

for the scenario where the smallest losses were predicted (Pesticide T on Hodnet (maximum

MAROV ~360).  In the fourth scenario, a modification of the Freundlich exponent from 0.9 to

0.99 resulted in an increase of pesticide losses from 0.043 g/ha to 0.864 g/ha.

Table 42 presents the 15 parameters which most influenced predictions for pesticide losses by

PESTLA.  There was a relative consistency in the ranking for the most sensitive parameters

except for the third scenario involving Pesticide L in the Hodnet soil.  The most sensitive

parameters were generally those related to sorption (Freundlich coefficient and exponent) and

degradation (half-life, molar activation energy of degradation).  The organic matter content

also had a significant influence since the description of sorption that was used in PESTLA for

the four scenarios was that which made use of Kom and the organic matter content.  In the

third scenario involving Pesticide L in the Hodnet soil, the second most sensitive parameter

was the dimensionless exponent “n” of the Van Genuchten equation which describes the

water retention curve.  Although the bulk density did not have any influence on the prediction

of percolation volumes, it had a significant influence (MAROV>1) on the prediction of
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pesticide losses for all scenarios.  The bulk density is used in the calculation of the repartition

of the pesticide between the solid and liquid phases.

ALW ATW ALH ATH

1 KOM 4.6 FREU 107.2 FREU 9.7 FREU 357.8

2 FREU 4.5 KOM 81.8 G6 8.0 KOM 190.1

3 EGCV 4.1 DEG 34.6 DEG 7.8 DEG 112.7

4 DEG 3.8 ORG 13.8 KOM 7.7 ORG 20.8

5 ORG 3.0 BD 12.8 EGCV 5.8 BD 18.8

6 BD 3.0 EGCV 10.0 G2 5.4 EGCV 16.2

7 G6 2.8 LEDS 4.3 ORG 4.1 LEDS 10.4

8 G2 1.8 G2 1.5 BD 4.0 G6 4.0

9 LEDS 1.0 G6 1.3 LEDS 2.9 COFR 1.8

10 G1 0.515 COFR 0.914 G3 0.352 G2 1.8

11 G3 0.313 CFTB 0.740 COFR 0.309 CFTB 1.4

12 CFTB 0.164 RDTB 0.449 SUWA 0.307 RDTB 1.1

13 COFR 0.162 G4 0.413 CFTB 0.288 RDS 0.893

14 RDTB 0.129 RSIG 0.396 G1 0.184 RSIG 0.828

15 SUWA 0.129 RDS 0.356 RDTB 0.153 SUWA 0.749

Table 42.  The 15 most influential parameters on the prediction of pesticide losses by PESTLA

for the four scenarios as determined by one-at-a-time sensitivity analysis

(classification by MAROV values)

3.4.3 Results for the Monte Carlo sensitivity analysis

Descriptive statistics on the values for the PESTLA input parameters obtained via sampling

into distribution functions are presented in Appendices 214 to 217.  A total of 250 runs was

carried out for each scenario using the randomly sampled values.  Basic statistics on the

percolation volumes and pesticide losses predicted by PESTLA are presented in Table 43.

More detailed statistics are available in Appendices 218 to 228.

Percolation (mm) Pesticide losses (g/ha)

ALW ATW ALH ATH ALW ATW ALH ATH

Minimum 2464 2408 2366 2326 5.5×10-3 0 0 0

Mean 2657 2655 2637 2632 50 8.1 7.0 1.4

Median 2649 2648 2632 2632 33 0.5 2.8 0.04

Maximum 2970 2978 2968 2930 317 128 65 30

CV (%) 0.04 0.04 0.05 0.05 1.11 2.26 1.50 2.68

Table 43.  Basic statistics on PESTLA predictions for the four scenarios

Regression techniques were used for non-transformed standardised data and transformed

(ranked) standardised data.  Coefficients of determination related to pesticide losses for the

transformed data (r2 0.92-0.95) were significantly larger than those for non-transformed data
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(r2 0.49-0.83) because of the inherent non-linearity in the prediction of pesticide losses by

PESTLA.  Classification of parameters according to their influence on the prediction of

percolation and pesticide losses was therefore conducted using Standardised Rank Regression

Coefficients only (Tables 44 and 45).  The larger the absolute values of the regression

coefficients (SRCC) the more influence the parameter has.  An increase in a parameter with a

positive SRCC will result in an increase in the model output and vice versa.

ALW ATW ALH ATH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

CFTB -0.8496 1 -0.8908 1 -0.8454 1 -0.8762 1

IR1 -0.2046 2 -0.2188 2 -0.1320 5 -0.1848 4

COFR -0.1646 4 -0.1988 4 -0.2429 3 -0.2357 3

RSIG 0.1451 5 0.1539 5 0.2692 2 0.2783 2

IF1 -0.1886 3 -0.2181 3 -0.1568 4 -0.1468 5

GCTB -0.0462 9 -0.0336 11 -0.0604 6 -0.0613 6

G13 0.0938 6 0.0590 8 0.0394 7 0.0120 15

SAVP -0.0237 17 -0.0206 15 0.0207 10 0.0474 8

RDS -0.0846 7 -0.0564 9 -0.0169 15 0.0023 28

SUWA 0.0409 10 0.0362 10 -0.0108 20 -0.0076 19

G12 -0.0578 8 -0.0620 7 -0.0095 21 -0.0044 24

RDTB -0.0358 12 -0.0690 6 -0.0118 19 0.0065 23

SUAI 0.0360 11 -0.0130 21 0.0159 16 0.0103 16

EGCV 0.0244 16 0.0284 14 0.0092 22 -0.0173 13

ENSL 0.0191 18 0.0314 12 -0.0071 25 0.0351 11

LEDS 0.0189 19 -0.0297 13 -0.0229 9 -0.0019 29

PSA -0.0186 20 -0.0153 17 0.0196 11 -0.0041 25

TEMI -0.0140 23 0.0055 26 0.0179 14 -0.0224 12

BD 0.0131 24 0.0138 18 -0.0152 18 -0.0066 21

CFUP 0.0101 27 -0.0010 32 0.0193 13 -0.0398 10

ORG 0.0349 13 0.0166 16 0.0076 24 0.0012 30

RDD 0.0113 26 -0.0130 20 0.0006 30 -0.0599 7

G16 0.0280 15 0.0041 30 -0.0194 12 -0.0026 27

ENVP -0.0020 31 -0.0092 23 -0.0158 17 0.0173 14

G14 -0.0333 14 0.0099 22 -0.0009 29 0.0076 20

G11 0.0127 25 0.0132 19 0.0058 26 -0.0102 17

CFLI -0.0084 28 0.0051 27 -0.0040 27 -0.0411 9

THAI -0.0173 22 0.0068 24 -0.0086 23 0.0026 26

DEG -0.0009 32 0.0046 28 0.0281 8 -0.0011 31

HI 0.0052 30 -0.0016 31 0.0035 28 0.0081 18

KOM 0.0183 21 0.0056 25 0.0005 31 0.0001 32

FREU 0.0073 29 -0.0041 29 0.0002 32 0.0065 22

Table 44.  Classification of PESTLA input parameters according to their influence

on results for percolation (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients
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ALW ATW ALH ATH

SRRC Rank SRRC Rank SRRC Rank SRRC Rank

DEG 0.6633 1 0.3746 3 0.5904 1 0.4500 3

FREU 0.3333 3 0.5750 1 0.3528 4 0.6601 1

KOM -0.5680 2 -0.4917 2 -0.4630 3 -0.4610 2

LEDS 0.2532 5 0.2041 4 0.4654 2 0.2139 4

EGCV 0.3110 4 0.1337 5 0.2495 5 0.1462 5

ORG -0.0878 7 -0.0998 6 -0.0494 10 -0.0759 6

BD -0.0636 9 -0.0901 7 -0.0484 11 -0.0481 9

G16 0.0294 12 0.0200 16 0.0897 7 0.0544 7

G12 -0.0883 6 0.0045 28 -0.0984 6 -0.0473 10

CFLI -0.0259 16 0.0252 11 -0.0220 18 0.0404 12

G13 0.0676 8 0.0210 13 0.0268 16 0.0218 20

SUWA 0.0344 10 0.0153 20 0.0798 8 0.0209 21

IR1 0.0287 13 -0.0103 25 -0.0377 13 -0.0374 13

THAI 0.0269 15 0.0110 23 -0.0274 15 -0.0438 11

RSIG 0.0232 17 0.0171 17 0.0165 23 0.0534 8

G14 0.0134 19 -0.0632 8 -0.0200 21 0.0179 24

CFUP -0.0283 14 0.0362 9 0.0161 24 0.0046 29

COFR 0.0118 21 -0.0306 10 0.0023 31 -0.0341 15

PSA 0.0093 22 -0.0153 21 -0.0448 12 -0.0202 22

RDTB 0.0070 24 -0.0155 19 0.0166 22 0.0262 16

SUAI -0.0064 26 -0.0113 22 -0.0216 19 -0.0254 17

HI -0.0015 29 0.0212 12 0.0134 26 0.0219 19

TEMI 0.0067 25 0.0168 18 -0.0222 17 -0.0059 28

CFTB -0.0003 32 0.0206 15 -0.0088 28 -0.0356 14

GCTB 0.0004 31 0.0080 26 -0.0525 9 -0.0195 23

SAVP -0.0147 18 0.0042 29 0.0347 14 0.0036 30

G11 -0.0129 20 0.0040 30 -0.0103 27 -0.0220 18

IF1 -0.0303 11 0.0002 32 0.0137 25 -0.0007 32

RDS 0.0055 27 -0.0210 14 0.0023 32 -0.0083 27

RDD -0.0076 23 -0.0105 24 -0.0061 29 0.0103 26

ENSL -0.0006 30 -0.0008 31 -0.0214 20 -0.0175 25

ENVP -0.0053 28 -0.0068 27 -0.0049 30 -0.0021 31

Table 45.  Classification of PESTLA input parameters according to their influence

on results for pesticide losses (Monte Carlo sampling)

SRRC= Standardised Rank Regression Coefficients

Table 44 shows that only the five most influential parameters were consistent between the

four different scenarios and contributed significantly to the sensitivity for the prediction of

percolation volumes (|SRCC|>0.1).  Predictions of percolation volumes were clearly

dominated by the parameter CFTB, the crop factor at the development stage 1.5 and 2.  There

was a strong negative linear correlation between percolation volumes predicted by PESTLA

and this particular parameter (r2 0.73).  The next four most influential parameters were the

extinction coefficients for diffuse and direct visible light (IR1 and IF1, respectively), a soil

evaporation coefficient (COFR) and a reset parameter (RSIG).  The two former parameters
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are needed to calculate the amount of light which reaches the canopy and the soil, which

determines the rate of assimilation and soil evaporation.  These two latter parameters are used

in the calculation of the reduction of soil evaporation.  Although the coefficient for soil

evaporation (know as CFBS in SWAP) was not included in the list of parameters to be varied,

it is likely that this is an influential parameter and that it has a significant influence on the

prediction of percolation volumes.

Again, the Monte Carlo approach showed limitations in that all input parameters were

assigned a sensitivity coefficient although most parameters were shown in the one-at-a-time

sensitivity analysis to have no influence on the prediction of percolation volumes.  Also, the

use of a linear approach for describing the non-linear relationship between model input and

output might have led to inaccuracies in the attribution of sensitivity indices.

A ranking of PESTLA parameters according to their influence on the prediction of pesticide

losses is presented in Table 46.  Ranking of the most influential parameters was somewhat

affected by the scenario considered.  A similar ranking for the five most influential parameters

was obtained for the two scenarions involving Pesticide T.  The five parameters which had the

most influence on the prediction of pesticide losses by PESTLA were the Freundlich exponent

(FREU) and distribution coefficient (KOM), the half-life (DEG), the molar activation energy

of degradation (EGCV) and the length of dispersion in the liquid phase (LEDS).  Although

PESTLA was found to be sensitive to the first four of these parameters in the one-at-a-time

sensitivity analysis, the length of dispersion was found to be somewhat less sensitive in the

one-at-a-time sensitivity analysis.

ALW ATW ALH ATH

1 DEG 0.663 FREU 0.575 DEG 0.590 FREU 0.660

2 KOM -0.568 KOM -0.492 LEDS 0.465 KOM -0.461

3 FREU 0.333 DEG 0.375 KOM -0.463 DEG 0.450

4 EGCV 0.311 LEDS 0.204 FREU 0.353 LEDS 0.214

5 LEDS 0.253 EGCV 0.134 EGCV 0.250 EGCV 0.146

6 G2 -0.088 ORG -0.100 G2 -0.098 ORG -0.076

7 ORG -0.088 BD -0.090 G6 0.090 G6 0.054

8 G3 0.068 G4 -0.063 SUWA 0.080 RSIG 0.053

9 BD -0.064 CFUP 0.036 GCTB -0.052 BD -0.048

10 SUWA 0.034 COFR -0.031 ORG -0.049 G2 -0.047

11 IF1 -0.030 CFLI 0.025 BD -0.048 THAI -0.044

12 G6 0.029 HI 0.021 PSA -0.045 CFLI 0.040

13 IR1 0.029 G3 0.021 IR1 -0.038 IR1 -0.037

14 CFUP -0.028 RDS -0.021 SAVP 0.035 CFTB -0.036

15 THAI 0.027 CFTB 0.021 THAI -0.027 COFR -0.034

Table 46.  The 15 most influential parameters on the prediction of pesticide losses

 by PESTLA for the four scenarios (Monte Carlo sampling).
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4. SUMMARY OF FINDINGS

Sensitivity analyses of the four primary pesticide leaching models recommended for pesticide

registration in Europe (MACRO, PELMO, PRZM and PESTLA) were carried out using two

investigation methods (one-at-a-time and Monte Carlo sensitivity analysis) and four initial

scenarios (2 pesticides, 2 soil types).

4.1 FINDINGS FOR INDIVIDUAL MODELS

4.1.1 MACRO 4.1

MACRO is the only model out of the four considered in this study which includes a

description of preferential flow phenomena in soils.

A distinction in pesticide breakthrough was noted in the simulation of the initial scenarios. In

contrast to the sandy loam soil where pesticide losses were predicted to occur over a few

months in a year, pesticide breakthrough for the clay loam was characterised by large, but

transient, losses.  This led to larger losses in the clay loam compared to the less structured

sandy loam, which is consistent with a larger influence of preferential flow phenomena on

pesticide losses in the more structured soil.

Sensitivity of the MACRO model was found to be dependent on the scenario considered.

Some parameters appeared to have a major influence for some scenarios and a smaller one in

others.  Also, the direction of the influence was found to depend on the scenario selected.

Depending on the soil, the pesticide or the combination of the two, an increase in a specific

input parameter resulted in either an increase or a decrease in pesticide losses.

Percolation volumes predicted by MACRO were much less affected by change in model input

than pesticide losses.  Sensitivity indices for percolation were less than unity which means

that a given change in the input will result in a smaller change in the output.  Percolation

volumes were mostly affected by the parameter XMPOR which relates to the definition of the

boundary between the two flow domains in MACRO.  Crop parameters were also shown to

have an influence on the prediction of percolation.

Predictions of total pesticide losses were much more affected by changes in input parameters.

For the two scenarios involving the sandy loam, changes in pesticide losses were dominated



Soil Survey and Land Research Centre

74

by changes in sorption (Freundlich distribution coefficient and exponent) and degradation

(degradation rates) parameters.  These parameters have considerable uncertainty and this will

contribute significantly to the uncertainty in modelling predictions.  For the two scenarios

involving the more structured clay loam, predictions for pesticide losses were also influenced

by parameters related to the description of the hydrology of the soil.  In one of the scenarios,

these soil and hydrological parameters were more important in determining the loss of

pesticides than sorption and transformation parameters.

4.1.2 PELMO 3.00

PELMO is a pesticide leaching model based on a “tipping bucket” hydrology and was

developed from an early version of the PRZM model.

Simulations of the initial scenarios revealed that pesticide breakthrough profiles were not

significantly affected by the soil type or pesticide considered.  Only the time to breakthrough

and number of years with leaching varied between scenarios.  Total losses for a specific

pesticide were predicted to be larger in the sandy loam than in the clay loam.  Very small

losses were simulated for the scenario describing the leaching of Pesticide T in the clay loam

soil.

The magnitude of the influence of changes in model input on the prediction of recharge

volumes was dependent on the soil type considered, but remained small.  Simulated recharge

volumes were affected by parameters related to the moisture content only (field capacity,

wilting point and soil water content at the beginning of the simulation period).  Crop

parameters included in the sensitivity analysis had a very small effect on the prediction of

recharge volumes.

In contrast to the prediction of recharge volumes, the prediction of pesticide losses by

PELMO was extremely sensitive to changes in input parameters in most cases and the

magnitude of sensitivity was dependent on the scenario considered.  Extremely large indices

of sensitivity were reported for one scenario, but this might be related to the very small losses

predicted.  Prediction of pesticide losses was mostly affected by degradation rates and

sorption parameters (Freundlich coefficient and exponent).  The field capacity also had a large

influence on the prediction of pesticide losses for scenarios involving one of the two

pesticides.  Bulk density had a significant influence on the prediction of pesticide losses,
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although it did not affect the prediction of water volumes.  This soil parameter is used in the

calculation of pesticide losses by degradation and sorption processes.

4.1.3 PRZM 3.14ββ

PRZM is the pesticide leaching model recommended for submissions to the US regulatory

authorities.  It is based on a “tipping bucket” hydrology and has recently been modified to

incorporate new subroutines such as a description of pesticide sorption by the Freundlich

equation.  In this study, the sensitivity of the model was investigated using a beta version of

the model which was released in December 1999 with a shell to run the model for the FOCUS

leaching scenarios.

PRZM simulations for the four initial scenarios showed that total losses for a specific

pesticide were larger in the sandy loam than in the clay loam.  Virtually no leaching of

Pesticide T in the clay loam was predicted by the model.  Pesticide breakthrough at the

bottom of the soil cores was predicted to last longer for Pesticide T than for Pesticide L.

For all scenarios, recharge volumes predicted by PRZM were only affected to a small extent

by changes in input parameters.  The parameter with the largest influence on prediction of

recharge was the “field capacity” which linked here both the field capacity for the soils and

the soil moisture in the profile at the beginning of the simulation.  Parameters which were

found to influence the prediction of recharge were those related to the soil moisture status, to

the computation of the actual evapotranspiration from the potential evapotranspiration and to

the description of the crop cover.

In contrast to the prediction of recharge volumes, the prediction of total pesticide losses by

PRZM was affected by a larger number of parameters and to a much greater extent.  The

largest sensitivities were reported for the scenario involving the clay loam, where pesticide

losses were predicted to be smallest, but this is likely to be related to the small losses

predicted.  Although the most influential parameters were different for each scenario, the

same parameters were found at the top of the list.  These included the parameters related to

pesticide sorption (Freundlich distribution coefficient and exponent) and degradation

(degradation rates, QTEN) and, to a lesser extent, the parameters related to the description of

the soil properties (field capacity, bulk density).  These results agree with those found for the

PELMO model as would be expected from the link in the development of the two models.
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4.1.3 PESTLA 3.4

PESTLA is a pesticide leaching model which uses the hydrological component of the SWAP

model.  Description of water and solute transport is based on the Richards’ equation and the

convection-dispersion equation, respectively.

Simulations for the four initial scenarios showed that percolation volumes were predicted to

be larger for the sandy loam than for the clay loam.  The largest losses were predicted for

Pesticide L in the sandy loam whilst the smallest losses were predicted for Pesticide T in the

more structured clay loam.  Leaching breakthrough for Pesticide L was shorter than that for

Pesticide T.

Prediction of volumes of percolation by SWAP/PESTLA were found to be affected by a large

number of parameters, but only to a small extent.  Influential variables included crop

parameters, parameters related to evapotranspiration and parameters related to the description

of the water release characteristics.  Although the coefficient for soil evaporation was not

included in the list of parameters which were varied, it is anticipated that this parameter also

has an influence on the prediction of recharge volumes.

In contrast to the prediction of percolation, prediction of total pesticide losses was greatly

affected by changes in input parameters.  The magnitude of the sensitivity was dependent on

the scenario considered and was largest for the scenario where the smallest pesticide losses

were predicted.  There was a relative consistency in the list of the parameters which most

influenced predictions for pesticide losses.  The most influential parameters were those related

to sorption and degradation (including both pesticide properties and soil organic matter

content).  Bulk density also had a significant influence on PESTLA/SWAP predictions for

pesticide losses.

4.2 SUMMARY OF FINDINGS FOR ALL MODELS

The magnitude of sensitivity was found to differ between model output (i.e. percolation

volumes or pesticide losses).  For each model, the ranking of the input parameters by

sensitivity of pesticide losses as well as the magnitude of the sensitivity itself were dependent

on the scenario.  The ranking of parameters was either dependent on the pesticide or soil

considered or on both.
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Model predictions for percolation were affected by a small number of input parameters and to

only a small extent.  Calculation of the potential evapotranspiration outside the model is likely

to be the most important variable for the prediction of percolation volumes.  In contrast,

prediction of pesticide losses was found to be dependent on a large number of input

parameters and was very much affected by variations in the model input.  The magnitude of

the sensitivities varied between the different models and the different scenarios.  Overall

model sensitivities for the different models were as follows: PELMO > PRZM > PESTLA >

MACRO.  The magnitude of the sensitivity appeared to be inversely related to the loss of

pesticide by leaching (i.e. the smaller the losses, the larger the sensitivity).  It therefore

appears difficult to make a direct comparison of sensitivities between models since different

levels of pesticide leaching were predicted by each.  The largest absolute sensitivities reported

may need to be considered as theoretical.

For almost all model-scenario combinations, parameters with the largest influence on

pesticide predictions were those related to sorption (Freundlich coefficient and exponent) and

degradation (either degradation rates or DT50, QTEN value).  Most of these parameters have

considerable uncertainty and they are likely to contribute greatly to the overall uncertainty in

modelling predictions.  Significant influence of some soil parameters (e.g. field capacity, bulk

density) was also occasionally noted in some specific scenarios for all models.  In one of the

four scenarios for the prediction of pesticide losses by MACRO for a more structured clay

loam, the influence of sorption and degradation parameters was surpassed by the influence of

soil parameters specific to the definition of the boundary between micropores and

macropores.

5. IMPLICATIONS FOR MODELLING ACTIVITIES AND SUBMISSION OF

MODELLING STUDIES TO REGULATORY AUTHORITIES

5.1 USE OF THE DATA AND IMPLICATIONS FOR MODELLING ACTIVITIES

5.1.1 Robustness of results and applicability to other environmental scenarios

Results of a sensitivity analysis depend on the choices and specifications made throughout the

analysis (e.g. parameters to include in the analysis, magnitude of variation of parameters, type

of probability distribution functions (pdf’s) for Monte Carlo sampling, parameterisation of

pdf’s).  All choices can be rather subjective and arbitrary and this should be considered when
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applying the results obtained.  Results from sensitivity analyses also depend on the initial

scenario considered (the “base-case scenario”).  This was confirmed by the investigations

which were carried out within the scope of this project and this indicates the necessity of

using multiple scenarios when studying the sensitivity of pesticide fate models.  Although the

four scenarios used in this study cover a range of conditions, they clearly do not encompass

the full variability in environmental conditions to which pesticide leaching models will be

applied.  Detailed recommendations can be made on model sensitivity for percolation, but the

complex interactions between soil hydrology, sorption and degradation makes it difficult to

derive general rules for the loss of pesticides that would be applicable to a large range of soils

or compounds.  It is therefore recommended that information on sensitivity of models that has

been derived here is used for scenarios which do not differ strongly from those considered in

this study.  For instances not covered (e.g. leaching of a volatile compound, loss of pesticides

via drainflow), the information should be used as a rough guide only and it is recommended

that quick sensitivity analyses are carried out for higher tier assessments.

Although a large number of model input parameters have been considered in the study, it was

not possible to investigate all model parameters for practical reasons or because it was felt

that there was no uncertainty on their values.  It is known that some parameters not included

in the investigations will significantly influence the prediction of percolation or pesticide

losses.  Examples include the application rate (it was not considered as an uncertain variable),

the interception coefficient (no interception was considered, but this parameter is uncertain),

the factors for the correction of degradation with depth (these were considered fixed, but they

directly impact on degradation rates) and the compartment thickness (this can be used to

indirectly introduce dispersion for some models).  Although all these parameters are not

present in the sensitivity tables produced within the scope of this project, care should be taken

to ensure that adequate values are assigned to them.

5.1.2 One-at-a-time vs. Monte Carlo approach to evaluate model sensitivity

In this study, both one-at-a-time and Monte Carlo sensitivity analyses have been used to

investigate the sensitivity of pesticide leaching models used for pesticide registration in

Europe.  Although this was not clear at the beginning of the investigations, it became apparent

that the approach based on Monte Carlo approach has some disadvantages which may affect

the influence which is attributed to individual parameters.  The main flaw resides in the use of

a linear regression model to derive sensitivity coefficients.  The prediction of pesticide

leaching is highly non-linear and this was apparent in the rather small distribution coefficients

of the multiple linear regressions.  A rank transformation successfully improved the goodness
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of fit indices, but it is not clear how much uncertainty is introduced by this transformation.

Another problem lies in the attribution of a regression coefficient to all input parameters

considered in the regression, even to those which do not affect model predictions as

demonstrated in the one-at-a-time sensitivity analysis.  Finally, there are some concerns

regarding the reproducibility of the results obtained by Monte Carlo sensitivity analysis.  It

appears that the reproducibility is affected by both the seed numbers used for the generation

of random values and by the number of sampled values.

One-at-a-time sensitivity analysis is intuitive and simple to conduct, but does not readily take

into account the correlation between parameters (although this is feasible).  It provides charts

which give a quick visual assessment of sensitivity and which are easily understood by non-

experts.  Finally, the derivation of sensitivity indices from a one-at-a-time sensitivity analysis

does not present issues related to the repeatability of the analysis.

Accordingly, it is concluded from this study that one-at-a-time sensitivity analysis should be

the preferred option for investigating the sensitivity of pesticide leaching models.  It is

important to note that the inadequacy of the Monte Carlo approach only applies to the

investigation of model sensitivity.  Monte Carlo simulations remain valid within the scope of

probabilistic risk assessment.

5.1.3 Calibration of pesticide leaching models

Calibration of models consists in varying selected input parameters and running the model

until there is an acceptable fit between model predictions and experimental data.  The

selection of model parameters to be varied is usually left to the modeller and the calibration is

rather subjective.  It is recommended that the information on sensitivity provided in this report

could be used to select those parameters which will be varied in situations similar to the

scenarios considered here.  In those instances where the situation differs significantly from

those considered in this study, it is recommended that a rapid sensitivity analysis is carried

out, either manually or automatically.  Failure to understand which parameters most influence

model predictions before engaging in a calibration task may result in an inadequate

parameterisation of the model.
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5.1.4 Rounding errors

Small modifications in model input can sometimes result in large variations in model

predictions, especially when predicted pesticide losses are small.  This implies that

unwarranted rounding of values, especially for the most sensitive parameters (e.g. Kd and

DT50 values, Freundlich exponent) should be avoided.

5.2 IMPLICATIONS FOR SUBMISSION OF MODELLING STUDIES TO REGULATORY

AUTHORITIES

5.2.1 Confidence assigned to modelling studies and probabilistic approaches

Large sensitivities in the prediction of pesticide losses by leaching have been found for all

four models used for the preparation of modelling submissions for pesticide registration in

Europe even if the largest sensitivities were found for scenarios where little leaching was

predicted.  Given the large uncertainty associated with some of the most sensitive parameters,

the outcome of any modelling study should be considered as uncertain.

Uncertainty is indirectly taken into account in the risk assessment for pesticides at lower tiers

by the use of “uncertainty factors” (e.g. in the Toxicity Exposure Ratio approach).  These

factors attempt to compensate for the uncertainties in the risk assessment procedure (e.g. use

of specific representative species to evaluate the ecotoxicology of a pesticide, uncertainty in

the estimation of the exposure).  The use of uncertainty factors at lower tiers is designed to

provide a first-step screening of pesticides with regard to their effect on the environment and

to identify those pesticides which need further risk characterisation.  The approach is rapid

and is considered adequate, although the magnitude of the factors is not based on any

theoretical model and it is difficult to know the level of protection which is introduced.  It is

unlikely that the introduction of uncertainty considerations at this lower tier level would offer

much benefit because of the relative complexity of taking uncertainty into account.

At higher tiers, mathematical modelling is heavily used to try to estimate the true potential of

a compound to impact on the environment.  More realistic assumptions are made and

uncertainty factors may be correspondingly reduced.  It is in these higher tier studies that

there is a strong need for the inclusion of uncertainty considerations.  Model output should be
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considered as uncertain and the influence of the uncertainty in the model input on the

uncertainty of model output should be taken into account (e.g. by adopting a probabilistic

approach).

5.2.2 Reporting needs

Selection of values for the most sensitive parameters is of great importance since small

variations will significantly influence model predictions.  Modelling studies should explicitly

report the values for the most sensitive parameters and the way they were derived.  Each

choice should be carefully documented and justified.  The origin of the value is important as

large uncertainties can be found where non-specific pesticide or soil data are used (e.g. soil

properties from databases or reference profiles).  In those instances where no data are

available, the influence of the uncertainty in the input parameters on model predictions could

be taken into account at higher tiers by performing either a number of model runs for specific

values of the most sensitive parameters or a full probabilistic risk assessment.  Probabilistic

risk assessment using a Monte Carlo approach should concentrate on the most sensitive and

uncertain parameters.

5.2.3 Parameters and variables which require particular attention

Sensitivity analyses performed on pesticide leaching models revealed that, in most cases, the

most influential parameters are those related to sorption and degradation.  Parameters related

to the soil moisture status were also found to have a significant influence on model

predictions for pesticide losses in some instances.

The lack of major influence of model input parameters on the prediction of

percolation/recharge volumes means that most care should be taken in the calculation of

potential evapotranspiration outside the model.  The balance between rainfall and

evapotranspiration fed into the model will be the main driver of the prediction of recharge

volumes.

The Freundlich exponent (referred to as “nf”, “n” or “1/n”) was found to have the largest

influence on the prediction of pesticide losses for at least one scenario for three of the four

models.  However, assessment of leaching properties of a compound has traditionally largely

focused on Koc/Kom and DT50 values.  The importance of the Freundlich exponent should



Soil Survey and Land Research Centre

82

not be overlooked.  This is a very influential and rather uncertain parameter and the selection

for modelling of the mean value from a series of laboratory studies may not be scientifically

justified.

A specific issue relates to the definition of the field capacity which was found to have a large

influence on the prediction of pesticide losses for a number of models.  The definition of field

capacity with regard to its field determination is not universal and varies between countries.

In Germany and the US, field capacity is defined as the water content at a pressure of -33 kPa,

but different pressures are used in other countries (-5 kPa in the UK, -10 kPa in the

Netherlands, -6 kPa in Canada).  It is not clear which definition should be used for which

models and a large uncertainty is therefore associated with this parameter.  Again, an

unambiguous reporting of the definition for field capacity which was used appears desirable

in modelling submissions.

5.2.4 Development of standard scenarios

One of the ways to tackle large sensitivities and subsequent large uncertainties is to fix some

parameters to default values.  The use of standard scenarios where a large number of

modelling parameters are fixed has been implemented by a number of countries (e.g.

Denmark, Germany, the Netherlands).  Scenarios for lower tier assessments have been

recently developed by the FOCUS leaching group.  It is important to note that results for these

standard scenarios can still be largely influenced by small variations in the inputs which are

not fixed (in particular pesticide parameters related to degradation and sorption) as leaching

models are most sensitive to some of them.  Recommendations on the selection of these

parameters have been given by FOCUS (2000).  The use of standard scenarios is only valid as

a first-step assessment of the leaching character of a compound.  It does not address

sensitivity and uncertainty issues for higher tier modelling.

5.2.5 Sensitivity and uncertainty

This study investigated the sensitivity of the four models used for pesticide registration in

Europe.  Sensitivity and uncertainty are two modelling concepts which are closely linked and

which are difficult to consider individually.  Uncertainty considerations were included in the

project through the definition of variation ranges for parameters (i.e. variation ranges were

chosen to reflect the uncertainty in the parameter values) and this can be viewed as a simple
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first-step uncertainty analysis.  The information derived on the sensitivity of pesticide

leaching models in this study should be the starting point for further work to fully assess the

uncertainty in modelling predictions and to develop procedures for performing probabilistic

modelling (i.e. taking uncertainty into account).
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